Skip to main content

Three-way handshake


Three-way handshake
11.1.4 This page will explain how TCP uses three-way handshakes for data transmission.


TCP is a connection-oriented protocol. TCP requires a connection to be established before data transfer begins. The two hosts must synchronize their initial sequence numbers to establish a connection. Synchronization occurs through an exchange of segments that carry a synchronize (SYN) control bit and the initial sequence numbers. This solution requires a mechanism that picks the initial sequence numbers and a handshake to exchange them.

The synchronization requires each side to send its own initial sequence number and to receive a confirmation of exchange in an acknowledgment (ACK) from the other side. Each side must receive the initial sequence number from the other side and respond with an ACK. The sequence is as follows:

1. The sending host (A) initiates a connection by sending a SYN packet to the receiving host (B) indicating its INS = X:

A - > B SYN, seq of A = X

2. B receives the packet, records that the seq of A = X, replies with an ACK of X + 1, and indicates that its INS = Y. The ACK of X + 1 means that host B has received all octets up to and including X and is expecting X + 1 next:

B - > A ACK, seq of A = X, SYN seq of B = Y, ACK = X + 1

3. A receives the packet from B, it knows that the seq of B = Y, and responds with an ACK of Y + 1, which finalizes the connection process:

A - > B ACK, seq of B = Y, ACK = Y + 1

This exchange is called the three-way handshake.

A three-way handshake is necessary because sequence numbers are not based on a global clock in the network and TCP protocols may use different mechanisms to choose the initial sequence numbers. The receiver of the first SYN would not know if the segment was delayed unless it kept track of the last sequence number used on the connection. If the receiver does not have this information, it must ask the sender to verify the SYN.

The next page will discuss the concept of windowing.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.