Skip to main content

Introduction to the TCP/IP application layer / DNS

Introduction to the TCP/IP application layer
11.2.1 This page will introduce some TCP/IP application layer protocols.


The session, presentation, and application layers of the OSI model are bundled into the application layer of the TCP/IP model. This means that representation, encoding, and dialog control are all handled in the TCP/IP application layer. This design ensures that the TCP/IP model provides maximum flexibility at the application layer for software developers.

The TCP/IP protocols that support file transfer, e-mail, and remote login are probably the most familiar to users of the Internet. These protocols include the following applications:

• DNS
• FTP
• HTTP
• SMTP
• SNMP
• Telnet

The next page will discuss DNS.

DNS
11.2.2 This page will describe DNS.


The Internet is built on a hierarchical addressing scheme. This scheme allows for routing to be based on classes of addresses rather than based on individual addresses. The problem this creates for the user is associating the correct address with the Internet site. It is very easy to forget an IP address to a particular site because there is nothing to associate the contents of the site with the address. Imagine the difficulty of remembering the IP addresses of tens, hundreds, or even thousands of Internet sites.

A domain naming system was developed in order to associate the contents of the site with the address of that site. The Domain Name System (DNS) is a system used on the Internet for translating names of domains and their publicly advertised network nodes into IP addresses. A domain is a group of computers that are associated by their geographical location or their business type. A domain name is a string of characters, number, or both. Usually a name or abbreviation that represents the numeric address of an Internet site will make up the domain name. There are more than 200 top-level domains on the Internet, examples of which include the following:

.us – United States
.uk – United Kingdom

There are also generic names, which examples include the following:

.edu – educational sites
.com – commercial sites
.gov – government sites
.org – non-profit sites
.net – network service

The next page will discuss FTP and TFTP.

Comments

Post a Comment

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.