Skip to main content

IP addressing

IP addressing
9.2.1 This page will describe IP addressing.


For any two systems to communicate, they must be able to identify and locate each other. The addresses in Figure are not actual network addresses. They represent and show the concept of address grouping.

A computer may be connected to more than one network. In this situation, the system must be given more than one address. Each address will identify the connection of the computer to a different network. Each connection point, or interface, on a device has an address to a network. This will allow other computers to locate the device on that particular network. The combination of the network address and the host address creates a unique address for each device on a network. Each computer in a TCP/IP network must be given a unique identifier, or IP address. This address, which operates at Layer 3, allows one computer to locate another computer on a network. All computers also have a unique physical address, which is known as a MAC address. These are assigned by the manufacturer of the NIC. MAC addresses operate at Layer 2 of the OSI model.

An IP address is a 32-bit sequence of ones and zeros. Figure shows a sample 32-bit number. To make the IP address easier to work with, it is usually written as four decimal numbers separated by periods. For example, an IP address of one computer is 192.168.1.2. Another computer might have the address 128.10.2.1. This is called the dotted decimal format. Each part of the address is called an octet because it is made up of eight binary digits. For example, the IP address 192.168.1.8 would be 11000000.10101000.00000001.00001000 in binary notation. The dotted decimal notation is an easier method to understand than the binary ones and zeros method. This dotted decimal notation also prevents a large number of transposition errors that would result if only the binary numbers were used.

Both the binary and decimal numbers in Figure represent the same values. However, the address is easier to understand in dotted decimal notation. This is one of the common problems associated with binary numbers. The long strings of repeated ones and zeros make errors more likely.

It is easy to see the relationship between the numbers 192.168.1.8 and 192.168.1.9. The binary values 11000000.10101000.00000001.00001000 and 11000000.10101000.00000001.00001001 are not as easy to recognize. It is more difficult to determine that the binary values are consecutive numbers.

The next page will discuss the conversion of binary and decimal numbers.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.