Skip to main content

Routing overview

Routing overview
10.2.1 This page will discuss routing and the two main functions of a router.


Routing is an OSI Layer 3 function. Routing is a hierarchical organizational scheme that allows individual addresses to be grouped together. These individual addresses are treated as a single unit until the destination address is needed for final delivery of the data. Routing finds the most efficient path from one device to another. The primary device that performs the routing process is the router.

The following are the two key functions of a router:

• Routers must maintain routing tables and make sure other routers know of changes in the network topology. They use routing protocols to communicate network information with other routers.

• When packets arrive at an interface, the router must use the routing table to determine where to send them. The router switches the packets to the appropriate interface, adds the frame information for the interface, and then transmits the frame.

A router is a network layer device that uses one or more routing metrics to determine the optimal path along which network traffic should be forwarded. Routing metrics are values that are used to determine the advantage of one route over another. Routing protocols use various combinations of metrics to determine the best path for data.

Routers interconnect network segments or entire networks. Routers pass data frames between networks based on Layer 3 information. Routers make logical decisions about the best path for the delivery of data. Routers then direct packets to the appropriate output port to be encapsulated for transmission. Stages of the encapsulation and de-encapsulation process occur each time a packet transfers through a router. The router must de-encapsulate the Layer 2 data frame to access and examine the Layer 3 address. As shown in Figure , the complete process of sending data from one device to another involves encapsulation and de-encapsulation on all seven OSI layers. The encapsulation process breaks up the data stream into segments, adds the appropriate headers and trailers, and then transmits the data. The de-encapsulation process removes the headers and trailers and then recombines the data into a seamless stream.

This course focuses on the most common routable protocol, which is IP. Other examples of routable protocols include IPX/SPX and AppleTalk. These protocols provide Layer 3 support. Non-routable protocols do not provide Layer 3 support. The most common non-routable protocol is NetBEUI. NetBEUI is a small, fast, and efficient protocol that is limited to frame delivery within one segment.

The next page will compare routing and switching.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.