Skip to main content

Classes of network IP addresses

Classes of network IP addresses
10.3.1 This page will review the classes of IP addresses. The combined classes of IP addresses offer a range from 256 to 16.8 million hosts.


To efficiently manage a limited supply of IP addresses, all classes can be subdivided into smaller subnetworks. Figure provides an overview of the division between networks and hosts.

The next page will explain why subnetting is important

Introduction to and reason for subnetting
10.3.2 This page will describe how subnetting works and why it is important.


To create the subnetwork structure, host bits must be reassigned as network bits. This is often referred to as ‘borrowing’ bits. However, a more accurate term would be ‘lending’ bits. The starting point for this process is always the leftmost host bit, the one closest to the last network octet.

Subnet addresses include the Class A, Class B, and Class C network portion, plus a subnet field and a host field. The subnet field and the host field are created from the original host portion of the major IP address. This is done by re-assigning bits from the host portion to the original network portion of the address. - The ability to divide the original host portion of the address into the new subnet and host fields provides addressing flexibility for the network administrator.

In addition to the need for manageability, subnetting enables the network administrator to provide broadcast containment and low-level security on the LAN. Subnetting provides some security since access to other subnets is only available through the services of a router. Further, access security may be provided through the use of access lists. These lists can permit or deny access to a subnet, based on a variety of criteria, thereby providing more security. Access lists will be studied later in the curriculum. Some owners of Class A and B networks have also discovered that subnetting creates a revenue source for the organization through the leasing or sale of previously unused IP addresses.

Subnetting is an internal function of a network. From the outside, a LAN is seen as a single network with no details of the internal network structure. This view of the network keeps the routing tables small and efficient. Given a local node address of 147.10.43.14 on subnet 147.10.43.0, the world outside the LAN sees only the advertised major network number of 147.10.0.0. The reason for this is that the local subnet address of 147.10.43.0 is only valid within the LAN where subnetting is applied.

The next page will discuss subnet masks.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.