Skip to main content

Routing protocols

Routing Protocols
10.2.9 This page will describe different types of router protocols.
RIP is a distance vector routing protocol that uses hop count as its metric to determine the direction and distance to any link in the internetwork. If there are multiple paths to a destination, RIP selects the path with the least number of hops. However, because hop count is the only routing metric used by RIP, it does not always select the fastest path to a destination. Also, RIP cannot route a packet beyond 15 hops. RIP Version 1 (RIPv1) requires that all devices in the network use the same subnet mask, because it does not include subnet mask information in routing updates. This is also known as classful routing.
RIP Version 2 (RIPv2) provides prefix routing, and does send subnet mask information in routing updates. This is also known as classless routing. With classless routing protocols, different subnets within the same network can have different subnet masks. The use of different subnet masks within the same network is referred to as variable-length subnet masking (VLSM).
IGRP is a distance-vector routing protocol developed by Cisco. IGRP was developed specifically to address problems associated with routing in large networks that were beyond the range of protocols such as RIP. IGRP can select the fastest available path based on delay, bandwidth, load, and reliability. IGRP also has a much higher maximum hop count limit than RIP. IGRP uses only classful routing.
OSPF is a link-state routing protocol developed by the Internet Engineering Task Force (IETF) in 1988. OSPF was written to address the needs of large, scalable internetworks that RIP could not.
Intermediate System-to-Intermediate System (IS-IS) is a link-state routing protocol used for routed protocols other than IP. Integrated IS-IS is an expanded implementation of IS-IS that supports multiple routed protocols including IP.
Like IGRP, EIGRP is a proprietary Cisco protocol. EIGRP is an advanced version of IGRP. Specifically, EIGRP provides superior operating efficiency such as fast convergence and low overhead bandwidth. EIGRP is an advanced distance-vector protocol that also uses some link-state protocol functions. Therefore, EIGRP is sometimes categorized as a hybrid routing protocol.
Border Gateway Protocol (BGP) is an example of an External Gateway Protocol (EGP). BGP exchanges routing information between autonomous systems while guaranteeing loop-free path selection. BGP is the principal route advertising protocol used by major companies and ISPs on the Internet. BGP4 is the first version of BGP that supports classless interdomain routing (CIDR) and route aggregation. Unlike common Internal Gateway Protocols (IGPs), such as RIP, OSPF, and EIGRP, BGP does not use metrics like hop count, bandwidth, or delay. Instead, BGP makes routing decisions based on network policies, or rules using various BGP path attributes.
The Lab Activity will help students understand the price of a small router.
This page concludes this lesson. The next lesson will focus on the mechanics of subnetting. The first page covers the different classes of IP addresses.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.