Skip to main content

Routed Protocol / IP as a routed protocol

Routed Protocol
Routable and routed protocols
10.1.1 This page will define routed and routable protocols.


A protocol is a set of rules that determines how computers communicate with each other across networks. Computers exchange data messages to communicate with each other. To accept and act on these messages, computers must have sets of rules that determine how a message is interpreted. Examples include messages used to establish a connection to a remote machine, e-mail messages, and files transferred over a network.

A protocol describes the following:

• The required format of a message
• The way that computers must exchange messages for specific activities

A routed protocol allows the router to forward data between nodes on different networks. A routable protocol must provide the ability to assign a network number and a host number to each device. Some protocols, such as IPX, require only a network number. These protocols use the MAC address of the host for the host number. Other protocols, such as IP, require an address with a network portion and a host portion. These protocols also require a network mask to differentiate the two numbers. The network address is obtained by ANDing the address with the network mask.

The reason that a network mask is used is to allow groups of sequential IP addresses to be treated as a single unit. If this grouping were not allowed, each host would have to be mapped individually for routing. This would be impossible, because according to the Internet Software Consortium there are approximately 233,101,500 hosts on the Internet.

The next page will discuss IP.
IP as a routed protocol
10.1.2 This page describes the features and functions of IP.


IP is the most widely used implementation of a hierarchical network-addressing scheme. IP is a connectionless, unreliable, best-effort delivery protocol. The term connectionless means that no dedicated circuit connection is established prior to transmission. IP determines the most efficient route for data based on the routing protocol. The terms unreliable and best-effort do not imply that the system is unreliable and does not work well. They indicate that IP does not verify that data sent on the network reaches its destination. If required, verification is handled by upper layer protocols.

As information flows down the layers of the OSI model, the data is processed at each layer. At the network layer, the data is encapsulated into packets. These packets are also known as datagrams. IP determines the contents of the IP packet header, which includes address information. However, it is not concerned with the actual data. IP accepts whatever data is passed down to it from the upper layers.

The next page examines how a packet travels through a network

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.