Skip to main content

Summary of Module 11

Summary
This page summarizes the topics discussed in this module.


The primary duties of the transport layer, Layer 4 of the OSI model, are to transport and regulate the flow of information from the source to the destination reliably and accurately.

The transport layer multiplexes data from upper layer applications into a stream of data packets. It uses port (socket) numbers to identify different conversations and delivers the data to the correct application.

The Transmission Control Protocol (TCP) is a connection-oriented transport protocol that provides flow control as well as reliability. TCP uses a three-way handshake to establish a synchronized circuit between end-user applications. Each datagram is numbered before transmission. At the receiving station, TCP reassembles the segments into a complete message. If a sequence number is missing in the series, that segment is retransmitted.

Flow control ensures that a transmitting node does not overwhelm a receiving node with data. The simplest method of flow control used by TCP involves a “not ready” signal that notifies the transmitting device that the buffers on the receiving device are full. When the receiver can handle additional data, the receiver sends a “ready” transport indicator.

Positive acknowledgment with retransmission is another TCP protocol technique that guarantees reliable delivery of data. Because having to wait for an acknowledgment after sending each packet would negatively impact throughput, windowing is used to allow multiple packets to be transmitted before an acknowledgment is received. TCP window sizes are variable during the lifetime of a connection.

Positive acknowledgment with retransmission is another TCP protocol technique that guarantees reliable delivery of data. Because having to wait for an acknowledgment after sending each packet would negatively impact throughput, windowing is used to allow multiple packets to be transmitted before an acknowledgment is received. TCP window sizes are variable during the lifetime of a connection.

If an application does not require flow control or an acknowledgment, as in the case of a broadcast transmission, User Datagram Protocol (UDP) can be used instead of TCP. UDP is a connectionless transport protocol in the TCP/IP protocol stack that allows multiple conversations to occur simultaneously but does not provide acknowledgments or guaranteed delivery. A UDP header is much smaller than a TCP header because of the lack of control information it must contain.

Some of the protocols and applications that function at the application level are well known to Internet users:

• Domain Name System (DNS) - Used in IP networks to translate names of network nodes into IP addresses

• File Transfer Protocol (FTP) - Used for transferring files between networks

• Hypertext Transfer Protocol (HTTP) - Used to deliver hypertext markup language (HTML) documents to a client application, such as a WWW browser

• Simple Mail Transfer Protocol (SMTP) - Used to provide electronic mail services

• Simple Network Management Protocol (SNMP) - Used to monitor and control network devices and to manage configurations, statistics collection, performance and security

• Telnet - Used to login to a remote host that is running a Telnet server application and then to execute commands from the command line

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.