Types of collisions
6.2.6 This page covers the different types of collisions and their characteristics.
Collisions typically take place when two or more Ethernet stations transmit simultaneously within a collision domain. A single collision is a collision that was detected while trying to transmit a frame, but on the next attempt the frame was transmitted successfully. Multiple collisions indicate that the same frame collided repeatedly before being successfully transmitted. The results of collisions, collision fragments, are partial or corrupted frames that are less than 64 octets and have an invalid FCS. Three types of collisions are:
• Local
• Remote
• Late
To create a local collision on coax cable (10BASE2 and 10BASE5), the signal travels down the cable until it encounters a signal from the other station. The waveforms then overlap, canceling some parts of the signal out and reinforcing or doubling other parts. The doubling of the signal pushes the voltage level of the signal beyond the allowed maximum. This over-voltage condition is then sensed by all of the stations on the local cable segment as a collision.
In the beginning the waveform in Figure represents normal Manchester encoded data. A few cycles into the sample the amplitude of the wave doubles. That is the beginning of the collision, where the two waveforms are overlapping. Just prior to the end of the sample the amplitude returns to normal. This happens when the first station to detect the collision quits transmitting, and the jam signal from the second colliding station is still observed.
On UTP cable, such as 10BASE-T, 100BASE-TX and 1000BASE-T, a collision is detected on the local segment only when a station detects a signal on the RX pair at the same time it is sending on the TX pair. Since the two signals are on different pairs there is no characteristic change in the signal. Collisions are only recognized on UTP when the station is operating in half duplex. The only functional difference between half and full duplex operation in this regard is whether or not the transmit and receive pairs are permitted to be used simultaneously. If the station is not engaged in transmitting it cannot detect a local collision. Conversely, a cable fault such as excessive crosstalk can cause a station to perceive its own transmission as a local collision.
The characteristics of a remote collision are a frame that is less than the minimum length, has an invalid FCS checksum, but does not exhibit the local collision symptom of over-voltage or simultaneous RX/TX activity. This sort of collision usually results from collisions occurring on the far side of a repeated connection. A repeater will not forward an over-voltage state, and cannot cause a station to have both the TX and RX pairs active at the same time. The station would have to be transmitting to have both pairs active, and that would constitute a local collision. On UTP networks this is the most common sort of collision observed.
There is no possibility remaining for a normal or legal collision after the first 64 octets of data has been transmitted by the sending stations. Collisions occurring after the first 64 octets are called “late collisions". The most significant difference between late collisions and collisions occurring before the first 64 octets is that the Ethernet NIC will retransmit a normally collided frame automatically, but will not automatically retransmit a frame that was collided late. As far as the NIC is concerned everything went out fine, and the upper layers of the protocol stack must determine that the frame was lost. Other than retransmission, a station detecting a late collision handles it in exactly the same way as a normal collision.
The next page will discuss the sources of Ethernet errors.
Tuesday, January 26, 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment