Skip to main content

Ethernet errors

Ethernet errors
6.2.7 This page will define common Ethernet errors.


Knowledge of typical errors is invaluable for understanding both the operation and troubleshooting of Ethernet networks.

The following are the sources of Ethernet error:

• Collision or runt – Simultaneous transmission occurring before slot time has elapsed
• Late collision – Simultaneous transmission occurring after slot time has elapsed
• Jabber, long frame and range errors – Excessively or illegally long transmission
• Short frame, collision fragment or runt – Illegally short transmission
• FCS error – Corrupted transmission
• Alignment error – Insufficient or excessive number of bits transmitted
• Range error – Actual and reported number of octets in frame do not match
• Ghost or jabber – Unusually long Preamble or Jam event

While local and remote collisions are considered to be a normal part of Ethernet operation, late collisions are considered to be an error. The presence of errors on a network always suggests that further investigation is warranted. The severity of the problem indicates the troubleshooting urgency related to the detected errors. A handful of errors detected over many minutes or over hours would be a low priority. Thousands detected over a few minutes suggest that urgent attention is warranted.

Jabber is defined in several places in the 802.3 standard as being a transmission of at least 20,000 to 50,000 bit times in duration. However, most diagnostic tools report jabber whenever a detected transmission exceeds the maximum legal frame size, which is considerably smaller than 20,000 to 50,000 bit times. Most references to jabber are more properly called long frames.

A long frame is one that is longer than the maximum legal size, and takes into consideration whether or not the frame was tagged. It does not consider whether or not the frame had a valid FCS checksum. This error usually means that jabber was detected on the network.

A short frame is a frame smaller than the minimum legal size of 64 octets, with a good frame check sequence. Some protocol analyzers and network monitors call these frames “runts". In general the presence of short frames is not a guarantee that the network is failing.

The term runt is generally an imprecise slang term that means something less than a legal frame size. It may refer to short frames with a valid FCS checksum although it usually refers to collision fragments.

The next page will continue the discussion of Ethernet frame errors.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.