Skip to main content

IEEE Ethernet naming rules

IEEE Ethernet naming rules
6.1.2 This page focuses on the Ethernet naming rules developed by IEEE.


Ethernet is not one networking technology, but a family of networking technologies that includes Legacy, Fast Ethernet, and Gigabit Ethernet. Ethernet speeds can be 10, 100, 1000, or 10,000 Mbps. The basic frame format and the IEEE sublayers of OSI Layers 1 and 2 remain consistent across all forms of Ethernet.

When Ethernet needs to be expanded to add a new medium or capability, the IEEE issues a new supplement to the 802.3 standard. The new supplements are given a one or two letter designation such as 802.3u. An abbreviated description, called an identifier, is also assigned to the supplement.

The abbreviated description consists of the following elements:

• A number that indicates the number of Mbps transmitted
• The word base to indicate that baseband signaling is used
• One or more letters of the alphabet indicating the type of medium used. For example, F = fiber optical cable and T = copper unshielded twisted pair

Ethernet relies on baseband signaling, which uses the entire bandwidth of the transmission medium. The data signal is transmitted directly over the transmission medium.

In broadband signaling, the data signal is no longer placed directly on the transmission medium. Ethernet used broadband signaling in the 10BROAD36 standard. 10BROAD36 is the IEEE standard for an 802.3 Ethernet network using broadband transmission with thick coaxial cable running at 10 Mbps. 10BROAD36 is now considered obsolete. An analog or carrier signal is modulated by the data signal and then transmitted. Radio broadcasts and cable TV use broadband signaling.

IEEE cannot force manufacturers to fully comply with any standard. IEEE has two main objectives:

• Supply the information necessary to build devices that comply with Ethernet standards
• Promote innovation among manufacturers

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.