Skip to main content

Naming

Naming
6.1.4 This page will discuss the MAC addresses used by Ethernet networks.


An address system is required to uniquely identify computers and interfaces to allow for local delivery of frames on the Ethernet. Ethernet uses MAC addresses that are 48 bits in length and expressed as 12 hexadecimal digits. The first six hexadecimal digits, which are administered by the IEEE, identify the manufacturer or vendor. This portion of the MAC address is known as the Organizational Unique Identifier (OUI). The remaining six hexadecimal digits represent the interface serial number or another value administered by the manufacturer. MAC addresses are sometimes referred to as burned-in MAC addresses (BIAs) because they are burned into ROM and are copied into RAM when the NIC initializes.

At the data link layer MAC headers and trailers are added to upper layer data. The header and trailer contain control information intended for the data link layer in the destination system. The data from upper layers is encapsulated within the data link frame, between the header and trailer, and then sent out on the network.

The NIC uses the MAC address to determine if a message should be passed on to the upper layers of the OSI model. The NIC does not use CPU processing time to make this assessment. This enables better communication times on an Ethernet network.

When a device sends data on an Ethernet network, it can use the destination MAC address to open a communication pathway to the other device. The source device attaches a header with the MAC address of the intended destination and sends data through the network. As this data travels along the network media the NIC in each device checks to see if the MAC address matches the physical destination address carried by the data frame. If there is no match, the NIC discards the data frame. When the data reaches the destination node, the NIC makes a copy and passes the frame up the OSI layers. On an Ethernet network, all nodes must examine the MAC header.

All devices that are connected to the Ethernet LAN have MAC addressed interfaces. This includes workstations, printers, routers, and switches. The next page will focus on Layer 2 frames.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.