Tuesday, January 26, 2010

Ethernet auto-negotiation

Ethernet auto-negotiation
6.2.9 This page explains auto-negotiation and how it is accomplished.


As Ethernet grew from 10 to 100 and 1000 Mbps, one requirement was to make each technology interoperable, even to the point that 10, 100, and 1000 interfaces could be directly connected. A process called Auto-Negotiation of speeds at half or full duplex was developed. Specifically, at the time that Fast Ethernet was introduced, the standard included a method of automatically configuring a given interface to match the speed and capabilities of the link partner. This process defines how two link partners may automatically negotiate a configuration offering the best common performance level. It has the additional advantage of only involving the lowest part of the physical layer.

10BASE-T required each station to transmit a link pulse about every 16 milliseconds, whenever the station was not engaged in transmitting a message. Auto-Negotiation adopted this signal and renamed it a Normal Link Pulse (NLP). When a series of NLPs are sent in a group for the purpose of Auto-Negotiation, the group is called a Fast Link Pulse (FLP) burst. Each FLP burst is sent at the same timing interval as an NLP, and is intended to allow older 10BASE-T devices to operate normally in the event they should receive an FLP burst.

Auto-Negotiation is accomplished by transmitting a burst of 10BASE-T Link Pulses from each of the two link partners. The burst communicates the capabilities of the transmitting station to its link partner. After both stations have interpreted what the other partner is offering, both switch to the highest performance common configuration and establish a link at that speed. If anything interrupts communications and the link is lost, the two link partners first attempt to link again at the last negotiated speed. If that fails, or if it has been too long since the link was lost, the Auto-Negotiation process starts over. The link may be lost due to external influences, such as a cable fault, or due to one of the partners issuing a reset.

The next page will discuss half and full duplex modes.

No comments:

Post a Comment