Skip to main content

Ethernet auto-negotiation

Ethernet auto-negotiation
6.2.9 This page explains auto-negotiation and how it is accomplished.


As Ethernet grew from 10 to 100 and 1000 Mbps, one requirement was to make each technology interoperable, even to the point that 10, 100, and 1000 interfaces could be directly connected. A process called Auto-Negotiation of speeds at half or full duplex was developed. Specifically, at the time that Fast Ethernet was introduced, the standard included a method of automatically configuring a given interface to match the speed and capabilities of the link partner. This process defines how two link partners may automatically negotiate a configuration offering the best common performance level. It has the additional advantage of only involving the lowest part of the physical layer.

10BASE-T required each station to transmit a link pulse about every 16 milliseconds, whenever the station was not engaged in transmitting a message. Auto-Negotiation adopted this signal and renamed it a Normal Link Pulse (NLP). When a series of NLPs are sent in a group for the purpose of Auto-Negotiation, the group is called a Fast Link Pulse (FLP) burst. Each FLP burst is sent at the same timing interval as an NLP, and is intended to allow older 10BASE-T devices to operate normally in the event they should receive an FLP burst.

Auto-Negotiation is accomplished by transmitting a burst of 10BASE-T Link Pulses from each of the two link partners. The burst communicates the capabilities of the transmitting station to its link partner. After both stations have interpreted what the other partner is offering, both switch to the highest performance common configuration and establish a link at that speed. If anything interrupts communications and the link is lost, the two link partners first attempt to link again at the last negotiated speed. If that fails, or if it has been too long since the link was lost, the Auto-Negotiation process starts over. The link may be lost due to external influences, such as a cable fault, or due to one of the partners issuing a reset.

The next page will discuss half and full duplex modes.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.