Skip to main content

Summary of Module 4

Summary
Data symbolizing characters, words, pictures, video, or music can be represented electrically by voltage patterns on wires and in electronic devices. The data represented by these voltage patterns can be converted to light waves or radio waves, and then back to voltage patterns. Waves are energy traveling from one place to another, and are created by disturbances. All waves have similar attributes such as amplitude, period, and frequency. Sine waves are periodic, continuously varying functions. Analog signals look like sine waves. Square waves are periodic functions whose values remain constant for a period of time and then change abruptly. Digital signals look like square waves.


Exponents are used to represent very large or very small numbers. The base of a number raised to a positive exponent is equal to the base multiplied by itself exponent times. For example, 103 = 10x10x10 = 1000. Logarithms are similar to exponents. A logarithm to the base of 10 of a number equals the exponent to which 10 would have to be raised in order to equal the number. For example, log10 1000 = 3 because 103 = 1000.

Decibels are measurements of a gain or loss in the power of a signal. Negative values represent losses and positive values represent gains. Time and frequency analysis can both be used to graph the voltage or power of a signal.

Undesirable signals in a communications system are called noise. Noise originates from other cables, radio frequency interference (RFI), and electromagnetic interference (EMI). Noise may affect all signal frequencies or a subset of frequencies.

Analog bandwidth is the frequency range that is associated with certain analog transmission, such as television or FM radio. Digital bandwidth measures how much information can flow from one place to another in a given amount of time. Its units are in various multiples of bits per second.

On copper cable, data signals are represented by voltage levels that correspond to binary ones and zeros. In order for the LAN to operate properly, the receiving device must be able to accurately interpret the bit signal. Proper cable installation according to standards increases LAN reliability and performance.

Signal degradation is due to various factors such as attenuation, impedance mismatch, noise, and several types of crosstalk. Attenuation is the decrease in signal amplitude over the length of a link. Impedance is a measurement of resistance to the electrical signal. Cables and the connectors used on them must have similar impedance values or some of the data signal may be reflected back from a connector. This is referred to as impedance mismatch or impedance discontinuity. Noise is any electrical energy on the transmission cable that makes it difficult for a receiver to interpret the data sent from the transmitter. Crosstalk involves the transmission of signals from one wire to a nearby wire. There are three distinct types of crosstalk: Near-end Crosstalk (NEXT), Far-end Crosstalk (FEXT), Power Sum Near-end Crosstalk (PSNEXT).

STP and UTP cable are designed to take advantage of the effects of crosstalk in order to minimize noise. Additionally, STP contains an outer conductive shield and inner foil shields that make it less susceptible to noise. UTP contains no shielding and is more susceptible to external noise but is the most frequently used because it is inexpensive and easier to install.

Fiber-optic cable is used to transmit data signals by increasing and decreasing the intensity of light to represent binary ones and zeros. The strength of a light signal does not diminish like the strength of an electrical signal does over an identical run length. Optical signals are not affected by electrical noise, and optical fiber does not need to be grounded. Therefore, optical fiber is often used between buildings and between floors within a building.

The TIA/EIA-568-B standard specifies ten tests that a copper cable must pass if it will be used for modern, high-speed Ethernet LANs. Optical fiber must also be tested according to networking standards. Category 6 cable must meet more rigorous frequency testing standards than Category 5 cable.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.