Friday, December 11, 2009

Module 3 Summary

Summary
This page summarizes the topics discussed in this module.


Copper cable carries information using electrical current. The electrical specifications of a cable determines the kind of signal a particular cable can transmit, the speed at which the signal is transmitted and the distance the signal will travel.

An understanding of the following electrical concepts is helpful when working with computer networks:

• Voltage – the pressure that moves electrons through a circuit from one place to another

• Resistance – opposition to the flow of electrons and why a signal becomes degraded as it travels along the conduit

• Current – flow of charges created when electrons move

• Circuits – a closed loop through which an electrical current flows

Circuits must be composed of conducting materials, and must have sources of voltage. Voltage causes current to flow, while resistance and impedance oppose it. A multimeter is used to measure voltage, current, resistance, and other electrical quantities expressed in numeric form.

Coaxial cable, unshielded twisted pair (UTP) and shielded twisted pair (STP) are types of copper cables that can be used in a network to provide different capabilities. Twisted-pair cable can be configured for straight through, crossover, or rollover signaling. These terms refer to the individual wire connections, or pinouts, from one end to the other end of the cable. A straight-through cable is used to connect unlike devices such as a switch and a PC. A crossover cable is used to connect similar devices such as two switches. A rollover cable is used to connect a PC to the console port of a router. Different pinouts are required because the transmit and receive pins are in different locations on each of these devices.

Optical fiber is the most frequently used medium for the longer, high-bandwidth, point-to-point transmissions required on LAN backbones and on WANs. Light energy is used to transmit large amounts of data securely over relatively long distances The light signal carried by a fiber is produced by a transmitter that converts an electrical signal into a light signal. The receiver converts the light that arrives at the far end of the cable back to the original electrical signal.

Every fiber-optic cable used for networking consists of two glass fibers encased in separate sheaths. Just as copper twisted-pair uses separate wire pairs to transmit and receive, fiber-optic circuits use one fiber strand to transmit and one to receive.

The part of an optical fiber through which light rays travel is called the core of the fiber. Surrounding the core is the cladding. Its function is to reflect the signal back towards the core. Surrounding the cladding is a buffer material that helps shield the core and cladding from damage. A strength material surrounds the buffer, preventing the fiber cable from being stretched when installers pull it. The material used is often Kevlar. The final element is the outer jacket that surrounds the cable to protect the fiber against abrasion, solvents, and other contaminants.

The laws of reflection and refraction are used to design fiber media that guides the light waves through the fiber with minimum energy and signal loss. Once the rays have entered the core of the fiber, there are a limited number of optical paths that a light ray can follow through the fiber. These optical paths are called modes. If the diameter of the core of the fiber is large enough so that there are many paths that light can take through the fiber, the fiber is called multimode fiber. Single-mode fiber has a much smaller core that only allows light rays to travel along one mode inside the fiber. Because of its design, single-mode fiber is capable of higher rates of data transmission and greater cable run distances than multimode fiber.

Fiber is described as immune to noise because it is not affected by external noise or noise from other cables. Light confined in one fiber has no way of inducing light in another fiber. Attenuation of a light signal becomes a problem over long cables especially if sections of cable are connected at patch panels or spliced.

Both copper and fiber media require that devices remains stationary permitting moves only within the limits of the media. Wireless technology removes these restraints. Understanding the regulations and standards that apply to wireless technology will ensure that deployed networks will be interoperable and in compliance with IEEE 802.11 standards for WLANs.

A wireless network may consist of as few as two devices. The wireless equivalent of a peer-to-peer network where end-user devices connect directly is referred to as an ad-hoc wireless topology. To solve compatibility problems among devices, an infrastructure mode topology can be set up using an access point (AP) to act as a central hub for the WLAN. Wireless communication uses three types of frames: control, management, and data frames. To avoid collisions on the shared radio frequency media WLANs use Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA).

WLAN authentication is a Layer 2 process that authenticates the device, not the user. Association, performed after authentication, permits a client to use the services of the access point to transfer data.

No comments:

Post a Comment