Skip to main content

Signals and noise on a WLAN / Wireless security


Signals and noise on a WLAN
3.3.6 This page discusses how signals and noise can affect a WLAN.


On a wired Ethernet network, it is usually a simple process to diagnose the cause of interference. When using RF technology many kinds of interference must be taken into consideration.

Narrowband is the opposite of spread spectrum technology. As the name implies narrowband does not affect the entire frequency spectrum of the wireless signal. One solution to a narrowband interference problem could be simply changing the channel that the AP is using. Actually diagnosing the cause of narrowband interference can be a costly and time-consuming experience. To identify the source requires a spectrum analyzer and even a low cost model is relatively expensive.

All band interference affects the entire spectrum range. Bluetooth™ technologies hops across the entire 2.4 GHz many times per second and can cause significant interference on an 802.11b network. It is not uncommon to see signs in facilities that use wireless networks requesting that all Bluetooth™ devices be shut down before entering. In homes and offices, a device that is often overlooked as causing interference is the standard microwave oven. Leakage from a microwave of as little as one watt into the RF spectrum can cause major network disruption. Wireless phones operating in the 2.4GHZ spectrum can also cause network disorder.

Generally the RF signal will not be affected by even the most extreme weather conditions. However, fog or very high moisture conditions can and do affect wireless networks. Lightning can also charge the atmosphere and alter the path of a transmitted signal.

The first and most obvious source of a signal problem is the transmitting station and antenna type. A higher output station will transmit the signal further and a parabolic dish antenna that concentrates the signal will increase the transmission range.

In a SOHO environment most access points will utilize twin omnidirectional antennae that transmit the signal in all directions thereby reducing the range of communication.

The next page describes WLANs security.


Wireless security
3.3.7 This page will explain how wireless security can be achieved.


Where wireless networks exist there is little security. This has been a problem from the earliest days of WLANs. Currently, many administrators are weak in implementing effective security practices.

A number of new security solutions and protocols, such as Virtual Private Networking (VPN) and Extensible Authentication Protocol (EAP) are emerging. With EAP, the access point does not provide authentication to the client, but passes the duties to a more sophisticated device, possibly a dedicated server, designed for that purpose. Using an integrated server VPN technology creates a tunnel on top of an existing protocol such as IP. This is a Layer 3 connection as opposed to the Layer 2 connection between the AP and the sending node.

• EAP-MD5 Challenge – Extensible Authentication Protocol is the earliest authentication type, which is very similar to CHAP password protection on a wired network.

• LEAP (Cisco) – Lightweight Extensible Authentication Protocol is the type primarily used on Cisco WLAN access points. LEAP provides security during credential exchange, encrypts using dynamic WEP keys, and supports mutual authentication.

• User authentication – Allows only authorized users to connect, send and receive data over the wireless network.

• Encryption – Provides encryption services further protecting the data from intruders.

• Data authentication – Ensures the integrity of the data, authenticating source and destination devices.

VPN technology effectively closes the wireless network since an unrestricted WLAN will automatically forward traffic between nodes that appear to be on the same wireless network. WLANs often extend outside the perimeter of the home or office in which they are installed and without security intruders may infiltrate the network with little effort. Conversely it takes minimal effort on the part of the network administrator to provide low-level security to the WLAN.

This page concludes the lesson. The next page will summarize the main points from the module.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.