Circuits
This page explains circuits.
3.1.5 Current flows in closed loops called circuits. These circuits must be made of conductive materials and must have sources of voltage. Voltage causes current to flow. Resistance and impedance oppose it. Current consists of electrons that flow away from negative terminals and toward positive terminals. These facts allow people to control the flow of current.
Electricity will naturally flow to the earth if there is a path. Current also flows along the path of least resistance. If a human body provides the path of least resistance, the current will flow through it. When an electric appliance has a plug with three prongs, one of the prongs acts as the ground, or 0 volts. The ground provides a conductive path for the electrons to flow to the earth. The resistance of the body would be greater than the resistance of the ground.
Ground typically means the 0-volts level in reference to electrical measurements. Voltage is created by the separation of charges, which means that voltage measurements must be made between two points.
A water analogy can help explain the concept of electricity. The higher the water and the greater the pressure, the more the water will flow. The water current also depends on the size of the space it must flow through. Similarly, the higher the voltage and the greater the electrical pressure, the more current will be produced. The electric current then encounters resistance that, like the water tap, reduces the flow. If the electric current is in an AC circuit, then the amount of current will depend on how much impedance is present. If the electric current is in a DC circuit, then the amount of current will depend on how much resistance is present. The pump is like a battery. It provides pressure to keep the flow moving.
The relationship among voltage, resistance, and current is voltage (V) equals current (I) multiplied by resistance (R). In other words, V=I*R. This is Ohm’s law, named after the scientist who explored these issues.
Two ways in which current flows are alternating current (AC) and direct current (DC). AC voltages change their polarity, or direction, over time. AC flows in one direction, then reverses its direction and flows in the other direction, and then repeats the process. AC voltage is positive at one terminal, and negative at the other. Then the AC voltage reverses its polarity, so that the positive terminal becomes negative, and the negative terminal becomes positive. This process repeats itself continuously.
DC always flows in the same direction and DC voltages always have the same polarity. One terminal is always positive, and the other is always negative. They do not change or reverse.
An oscilloscope is an electronic device used to measure electrical signals relative to time. An oscilloscope graphs the electrical waves, pulses, and patterns. An oscilloscope has an x-axis that represents time, and a y-axis that represents voltage. There are usually two y-axis voltage inputs so that two waves can be observed and measured at the same time.
Power lines carry electricity in the form of AC because it can be delivered efficiently over large distances. DC can be found in flashlight batteries, car batteries, and as power for the microchips on the motherboard of a computer, where it only needs to go a short distance.
Electrons flow in closed circuits, or complete loops. Figure shows a simple circuit. The chemical processes in the battery cause charges to build up. This provides a voltage, or electrical pressure, that enables electrons to flow through various devices. The lines represent a conductor, which is usually copper wire. Think of a switch as two ends of a single wire that can be opened or broken to prevent the flow of electrons. When the two ends are closed, fixed, or shorted, electrons are allowed to flow. Finally, a light bulb provides resistance to the flow of electrons, which causes the electrons to release energy in the form of light. The circuits in networks use a much more complex version of this simple circuit.
For AC and DC electrical systems, the flow of electrons is always from a negatively charged source to a positively charged source. However, for the controlled flow of electrons to occur, a complete circuit is required. Figure shows part of the electrical circuit that brings power to a home or office.
The Lab Activity explores the basic properties of series circuits.
The next page covers cable specifications.
Cable specifications
3.1.6 Cables have different specifications and expectations. Important considerations related to performance are as follows:
• What speeds for data transmission can be achieved? The speed of bit transmission through the cable is extremely important. The speed of transmission is affected by the kind of conduit used.
• Will the transmissions be digital or analog? Digital or baseband transmission and analog or broadband transmission require different types of cable.
• How far can a signal travel before attenuation becomes a concern? If the signal is degraded, network devices might not be able to receive and interpret the signal. The distance the signal travels through the cable affects attenuation of the signal. Degradation is directly related to the distance the signal travels and the type of cable used.
The following Ethernet specifications relate to cable type:
• 10BASE-T
• 10BASE5
• 10BASE2
10BASE-T refers to the speed of transmission at 10 Mbps. The type of transmission is baseband, or digitally interpreted. The T stands for twisted pair.
10BASE5 refers to the speed of transmission at 10 Mbps. The type of transmission is baseband, or digitally interpreted. The 5 indicates that a signal can travel for approximately 500 meters before attenuation could disrupt the ability of the receiver to interpret the signal. 10BASE5 is often referred to as Thicknet. Thicknet is a type of network and 10BASE5 is the cable used in that network.
10BASE2 refers to the speed of transmission at 10 Mbps. The type of transmission is baseband, or digitally interpreted. The 2, in 10BASE2, refers to the approximate maximum segment length being 200 meters before attenuation could disrupt the ability of the receiver to appropriately interpret the signal being received. The maximum segment length is actually 185 meters. 10BASE2 is often referred to as Thinnet. Thinnet is a type of network and 10BASE2 is the cable used in that network.
The next page describes coaxial cable.
Coaxial cable
3.1.7 Coaxial cable consists of a copper conductor surrounded by a layer of flexible insulation. The center conductor can also be made of tin plated aluminium cable allowing for the cable to be manufactured inexpensively. Over this insulating material is a woven copper braid or metallic foil that acts as the second wire in the circuit and as a shield for the inner conductor. This second layer, or shield also reduces the amount of outside electromagnetic interference. Covering this shield is the cable jacket.
For LANs, coaxial cable offers several advantages. It can be run longer distances than shielded twisted pair, STP, unshielded twisted pair, UTP, and screened twisted pair, ScTP, cable without the need for repeaters. Repeaters regenerate the signals in a network so that they can cover greater distances. Coaxial cable is less expensive than fiber-optic cable and the technology is well known. It has been used for many years for many types of data communication such as cable television.
It is important to consider the size of a cable. As the thickness increases, it becomes more difficult to work with a cable. Remember that cable must be pulled through conduits and troughs that are limited in size. Coaxial cable comes in a variety of sizes. The largest diameter was specified for use as Ethernet backbone cable since it has greater transmission lengths and noise rejection characteristics. This type of coaxial cable is frequently referred to as Thicknet. This type of cable can be too rigid to install easily in some situations. Generally, the more difficult the network media is to install, the more expensive it is to install. Coaxial cable is more expensive to install than twisted-pair cable. Thicknet cable is rarely used anymore aside from special purpose installations.
In the past, Thinnet coaxial cable with an outside diameter of only 0.35 cm was used in Ethernet networks. It was especially useful for cable installations that required the cable to make many twists and turns. Since Thinnet was easier to install, it was also cheaper to install. This led some people to refer to it as Cheapernet. The outer copper or metallic braid in coaxial cable comprises half the electric circuit. A solid electrical connection at both ends is important to properly ground the cable. Poor shield connection is one of the biggest sources of connection problems in the installation of coaxial cable. Connection problems result in electrical noise that interferes with signal transmission. For this reason Thinnet is no longer commonly used nor supported by latest standards, 100 Mbps and higher, for Ethernet networks.
The following page describes STP cable.
Monday, December 7, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment