Skip to main content

Noise in time and frequency (Optional)


Noise in time and frequency (Optional)
4.1.7 Noise is an important concept in networks such as LANs. Noise usually refers to sounds. However, noise related to communications refers to undesirable signals. Noise can originate from natural or technological sources and is added to the data signals in communications systems.


All communications systems have some amount of noise. Even though noise cannot be eliminated, its effects can be minimized if the sources of the noise are understood. There are many possible sources of noise:

• Nearby cables that carry data signals
• RFI from other signals that are transmitted nearby
• EMI from nearby sources such as motors and lights
• Laser noise at the transmitter or receiver of an optical signal

Noise that affects all transmission frequencies equally is called white noise. Noise that only affects small ranges of frequencies is called narrowband interference. White noise on a radio receiver would interfere with all radio stations. Narrowband interference would affect only a few stations whose frequencies are close together. When detected on a LAN, white noise could affect all data transmissions, but narrowband interference might disrupt only certain signals.

The Interactive Media Activity will allow students to generate white noise and narrowband noise.

The next page will describe analog bandwidth and digital bandwidth.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.