Skip to main content

Bandwidth


Bandwidth
4.1.8 This page will describe bandwidth, which is an extremely important concept in networks.


Two types of bandwidth that are important for the study of LANs are analog and digital.

Analog bandwidth typically refers to the frequency range of an analog electronic system. Analog bandwidth could be used to describe the range of frequencies transmitted by a radio station or an electronic amplifier. The unit of measurement for analog bandwidth is hertz (Hz), the same as the unit of frequency.

Digital bandwidth measures how much information can flow from one place to another in a given amount of time. The fundamental unit of measurement for digital bandwidth is bps. Since LANs are capable of speeds of thousands or millions of bits per second, measurement is expressed in kbps or Mbps. Physical media, current technologies, and the laws of physics limit bandwidth.

During cable testing, analog bandwidth is used to determine the digital bandwidth of a copper cable. The digital waveforms are made up of many sinewaves (analog waves). Analog frequencies are transmitted from one end and received on the opposite end. The two signals are then compared, and the amount of attenuation of the signal is calculated. In general, media that will support higher analog bandwidths without high degrees of attenuation will also support higher digital bandwidths.

This page concludes this lesson. The next lesson will discuss signals and noise. The first page describes copper and fiber optic cables.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.