Skip to main content

Client/server

Client/server
5.1.13 This page will describe a client/server environment.


In a client/server arrangement, network services are located on a dedicated computer called a server. The server responds to the requests of clients. The server is a central computer that is continuously available to respond to requests from clients for file, print, application, and other services. Most network operating systems adopt the form of a client/server relationship. Typically, desktop computers function as clients and one or more computers with additional processing power, memory, and specialized software function as servers.

Servers are designed to handle requests from many clients simultaneously. Before a client can access the server resources, the client must be identified and be authorized to use the resource. Each client is assigned an account name and password that is verified by an authentication service. The authentication service guards access to the network. With the centralization of user accounts, security, and access control, server-based networks simplify the administration of large networks.

The concentration of network resources such as files, printers, and applications on servers also makes it easier to back-up and maintain the data. Resources can be located on specialized, dedicated servers for easier access. Most client/server systems also include ways to enhance the network with new services that extend the usefulness of the network.

The centralized functions in a client/server network has substantial advantages and some disadvantages. Although a centralized server enhances security, ease of access, and control, it introduces a single point of failure into the network. Without an operational server, the network cannot function at all. Servers require a trained, expert staff member to administer and maintain. Server systems also require additional hardware and specialized software that add to the cost.

This page concludes this lesson. The next lesson will discuss cabling WANs. The first page focuses on the WAN physical layer.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.