Skip to main content

Two switching methods

Two switching methods 
4.2.10 This page will introduce store-and-forward and cut-through switching.
The following two switching modes are available to forward frames: 
  • Store-and-forward - The entire frame is received before any forwarding takes place. The destination and source addresses are read and filters are applied before the frame is forwarded. Latency occurs while the frame is being received. Latency is greater with larger frames because the entire frame must be received before the switching process begins. The switch is able to check the entire frame for errors, which allows more error detection.
  • Cut-through - The frame is forwarded through the switch before the entire frame is received. At a minimum the frame destination address must be read before the frame can be forwarded. This mode decreases the latency of the transmission, but also reduces error detection.
The following are two forms of cut-through switching: 
  • Fast-forward - Fast-forward switching offers the lowest level of latency. Fast-forward switching immediately forwards a packet after reading the destination address. Because fast-forward switching starts forwarding before the entire packet is received, there may be times when packets are relayed with errors. Although this occurs infrequently and the destination network adapter will discard the faulty packet upon receipt. In fast-forward mode, latency is measured from the first bit received to the first bit transmitted.
  • Fragment-free - Fragment-free switching filters out collision fragments before forwarding begins. Collision fragments are the majority of packet errors. In a properly functioning network, collision fragments must be smaller than 64 bytes. Anything greater than 64 bytes is a valid packet and is usually received without error. Fragment-free switching waits until the packet is determined not to be a collision fragment before forwarding. In fragment-free mode, latency is also measured from the first bit received to the first bit transmitted.
The latency of each switching mode depends on how the switch forwards the frames. To accomplish faster frame forwarding, the switch reduces the time for error checking. However, reducing the error checking time can lead to a higher number of retransmissions.
This page concludes this lesson. The next lesson will describe Ethernet Switches. The first page will explain the main functions of switches.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.