Skip to main content

Layer 2 design

Layer 2 design 
5.1.5 This page will discuss some important Layer 2 design considerations.
The purpose of Layer 2 devices in the network is to switch frames based on destination MAC address information, provide error detection, and to reduce congestion in the network. The two most common Layer 2 network devices are bridges and LAN switches. Devices at Layer 2 determine the size of the collision domains. 
Collisions and collision domain size are two factors that negatively affect the performance of a network. Microsegmentation of the network reduces the size of collision domains and reduces collisions.  Micro segmentation is implemented through the use of bridges and switches. The goal is to boost performance for a workgroup or a backbone. Switches can be used with hubs to provide the appropriate level of performance for different users and servers.
Another important characteristic of a LAN switch is how it allocates bandwidth on a per-port basis. This provides more bandwidth to vertical cabling, uplinks, and servers. This type of switching is referred to as asymmetric switching. Asymmetric switching provides switched connections between ports of unlike bandwidth, such as a combination of 10-Mbps and 100-Mbps ports. Symmetric switching provides switched connections between ports of similar bandwidth.
The desired capacity of a vertical cable run is greater than that of a horizontal cable run. The installation of a LAN switch at the MDF and IDF allows the vertical cable run to manage the data traffic from the MDF to the IDF. The horizontal runs between the IDF and the workstations use Category 5e UTP. A horizontal cable drop should not be longer than 100 meters (328 ft.). In a normal environment, 10 Mbps is adequate for the horizontal drop. Asymmetric LAN switches allow 10-Mbps and 100-Mbps ports on a single switch.
The next task is to determine the number of 10 Mbps and 100 Mbps ports needed in the MDF and every IDF. This is accomplished by a review of the user requirements for the number of horizontal cable drops per room and the number of total drops in any catchment area. This includes the number of vertical cable runs. For example, suppose that user requirements dictate four horizontal cable runs to be installed in each room. The IDF services a catchment area of 18 rooms. Therefore, four drops in each of the 18 rooms equals 4x18, or 72 LAN switch ports.
The size of a collision domain is determined by the number of hosts that are physically connected to any single port on the switch. This also affects the bandwidth that is available to any host. In an ideal situation, there is only one host connected on a LAN switch port. The collision domain would consist only of the source host and destination host. The size of the collision domain would be two. Because of the small size of this collision domain, there should be virtually no collisions when any two hosts communicate with each other. Another way to implement LAN switching is to install shared LAN hubs on the switch ports. This allows multiple hosts to connect to a single switch port. All hosts connected to the shared LAN hub share the same collision domain and bandwidth. That means that collisions would occur more frequently. 
Shared media hubs are generally used in a LAN switch environment to create more connection points at the end of the horizontal cable runs. This is an acceptable solution, but care must be taken. Collision domains should be kept small and bandwidth to the host must be provided in accordance to the specifications gathered in the requirements phase of the network design process.
The next page will discuss Layer 3 design issues.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.