Skip to main content

Distribution layer switches

Distribution layer switches 
5.2.4 This page will explain the features and functions of distribution layer switches.
Distribution layer switches are the aggregation points for multiple access layer switches. The switch must be able to accommodate the total amount of traffic from the access layer devices.
The distribution layer switch must have high performance. The distribution layer switch is a point at which a broadcast domain is delineated. The distribution layer combines VLAN traffic and is a focal point for policy decisions about traffic flow. For these reasons, distribution layer switches operate at both Layer 2 and Layer 3 of the OSI model. Switches in this layer are referred to as multilayer switches. These multilayer switches combine the functions of a router and a switch in one device. They are designed to switch traffic to gain higher performance than a standard router. If they do not have an associated router module, then an external router is used for the Layer 3 function.
The following Cisco switches are suitable for the distribution layer: 
  • Catalyst 2926G 
  • Catalyst 5000 family
  • Catalyst 6000 family  
The next page will describe the core layer.

Core layer overview 
5.2.5 The core layer is a high-speed switching backbone. If they do not have an associated router module, an external router is used for the Layer 3 function. This layer of the network design should not perform any packet manipulation. Packet manipulation, such as access list filtering, would slow down the switching of packets. A core infrastructure with redundant alternate paths gives stability to the network in the event of a single device failure.
The core can be designed to use Layer 2 or Layer 3 switching. ATM or Ethernet switches can be used.
The Interactive Media Activity will require students to identify the main functions of the access, distribution, and core layers.
The next page will discuss core layer switches.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.