Skip to main content

LAN Switches / Switched LANs, access layer overview

LAN Switches
Switched LANs, access layer overview 
5.2.1 The construction of a LAN that satisfies the needs of both medium and large-sized organizations is more likely to be successful if a hierarchical design model is used. The use of a hierarchical design model will make it easier to make changes to the network as the organization grows. This page will discuss the three layers of the hierarchical design model:
  • The access layer provides users in workgroups access to the network.
  • The distribution layer provides policy-based connectivity.
  • The core layer provides optimal transport between sites. The core layer is often referred to as the backbone.
This hierarchical model applies to any network design. It is important to realize that these three layers may exist in clear and distinct physical entities. However, this is not a requirement. These layers are defined to aid in successful network design and to represent functionality that must exist in a network.
The access layer is the entry point for user workstations and servers to the network. In a campus LAN the device used at the access layer can be a switch or a hub.
If a hub is used, bandwidth is shared. If a switch is used, then bandwidth is dedicated. If a workstation or server is directly connected to a switch port, then the full bandwidth of the connection to the switch is available to the connected computer. If a hub is connected to a switch port, bandwidth is shared between all devices connected to the hub.
Access layer functions also include MAC layer filtering and microsegmentation. MAC layer filtering allows switches to direct frames only to the switch port that is connected to the destination device. The switch creates small Layer 2 segments called microsegments. The collision domain can be as small as two devices. Layer 2 switches are used in the access layer.
The next page will describe access layer switches.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.