Skip to main content

Symmetric and asymmetric switching / Memory buffering

Symmetric and asymmetric switching 
4.2.8 This page will explain the difference between symmetric and asymmetric switching.
LAN switching may be classified as symmetric or asymmetric based on the way in which bandwidth is allocated to the switch ports. A symmetric switch provides switched connections between ports with the same bandwidth. An asymmetric LAN switch provides switched connections between ports of unlike bandwidth, such as a combination of 10-Mbps and 100-Mbps ports.
Asymmetric switching enables more bandwidth to be dedicated to the server switch port in order to prevent a bottleneck. This allows smoother traffic flows where multiple clients are communicating with a server at the same time. Memory buffering is required on an asymmetric switch. The use of buffers keeps the frames contiguous between different data rate ports.
The next page will discuss memory buffers.
Memory buffering 
4.2.9 This page will explain what a memory buffer is and how it is used.
An Ethernet switch may use a buffering technique to store and forward frames. Buffering may also be used when the destination port is busy. The area of memory where the switch stores the data is called the memory buffer. This memory buffer can use two methods for forwarding frames, port-based memory buffering and shared memory buffering. 
In port-based memory buffering frames are stored in queues that are linked to specific incoming ports. A frame is transmitted to the outgoing port only when all the frames ahead of it in the queue have been successfully transmitted. It is possible for a single frame to delay the transmission of all the frames in memory because of a busy destination port. This delay occurs even if the other frames could be transmitted to open destination ports.
Shared memory buffering deposits all frames into a common memory buffer which all the ports on the switch share. The amount of buffer memory required by a port is dynamically allocated. The frames in the buffer are linked dynamically to the destination port. This allows the packet to be received on one port and then transmitted on another port, without moving it to a different queue.
The switch keeps a map of frame to port links showing where a packet needs to be transmitted. The map link is cleared after the frame has been successfully transmitted. The memory buffer is shared. The number of frames stored in the buffer is restricted by the size of the entire memory buffer, and not limited to a single port buffer. This permits larger frames to be transmitted with fewer dropped frames. This is important to asymmetric switching, where frames are being exchanged between different rate ports.
The next page will describe two switching methods.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.