Skip to main content

Verifying RIP v2

Verifying RIP v2

1.2.5 The show ip protocols and show ip route commands display information about routing protocols and the routing table. This page explains how show commands are used to verify a RIP configuration.
The show ip protocols command displays values about routing protocols and routing protocol timer information associated with the router. In the example, the router is configured with RIP and sends updated routing table information every 30 seconds. This interval is configurable. If a router running RIP does not receive an update from another router for 180 seconds or more, the first router marks the routes served by the non-updating router as being invalid. The holddown timer is set to 180 seconds. Therefore, an update to a route that was down and is now up could stay in the holddown state until the full 180 seconds have passed.
If there is still no update after 240 seconds the router removes the routing table entries. The router is injecting routes for the networks listed following the Routing for Networks line. The router is receiving routes from the neighboring RIP routers listed following the Routing Information Sources line. The distance default of 120 refers to the administrative distance for a RIP route.
The show ip interface brief command can also be used to list a summary of the information and status of an interface.
The show ip route command displays the contents of the IP routing table. The routing table contains entries for all known networks and subnetworks, and contains a code that indicates how that information was learned.
Examine the output to see if the routing table is populated with routing information. If entries are missing, routing information is not being exchanged. Use the show running-config or show ip protocols Privileged EXEC commands on the router to check for a possible misconfigured routing protocol.
The Lab Activity will teach students how to use show commands to verify RIP v2 configurations.
The next page will discuss the debug ip rip command.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.