Skip to main content

Compare and contrast distance vector and link-state routing

Compare and contrast distance vector and link-state routing
2.1.6 This page will compare distance vector and link-state routing protocols.
All distance vector protocols learn routes and then send these routes to directly connected neighbors. However, link-state routers advertise the states of their links to all other routers in the area so that each router can build a complete link-state database. These advertisements are called link-state advertisements or LSAs. Unlike distance vector routers, link-state routers can form special relationships with their neighbors and other link-state routers. This is to ensure that the LSA information is properly and efficiently exchanged.
The initial flood of LSAs provides routers with the information that they need to build a link-state database. Routing updates occur only when the network changes. If there are no changes, the routing updates occur after a specific interval. If the network changes, a partial update is sent immediately. The partial update only contains information about links that have changed. Network administrators concerned about WAN link utilization will find these partial and infrequent updates an efficient alternative to distance vector routing protocols, which send out a complete routing table every 30 seconds. When a change occurs, link-state routers are all notified simultaneously by the partial update. Distance vector routers wait for neighbors to note the change, implement the change, and then pass the update to the neighbor routers. 
The benefits of link-state over distance vector protocols include faster convergence and improved bandwidth utilization. Link-state protocols support CIDR and VLSM. This makes them a good choice for complex and scalable networks. In fact, link-state protocols generally outperform distance vector protocols on any size network. Link-state protocols are not implemented on every network because they require more memory and processor power than distance vector protocols and can overwhelm slower equipment. Another reason they are not more widely implemented is the fact that link-state protocols are quite complex. Link-state routing protocols require well-trained administrators to correctly configure and maintain them.
This page concludes this lesson. The next lesson will introduce a link-state routing protocol called OSPF. The first page will provide an overview. 

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.