Skip to main content

How routing information is maintained

How routing information is maintained

2.1.3 This page will explain how link-state protocols use the following features:
  • The LSAs
  • A topological database
  • The SPF algorithm
  • The SPF tree
  • A routing table of paths and ports to determine the best path for packets 
Link-state routing protocols were designed to overcome the limitations of distance vector routing protocols. For example, distance vector protocols only exchange routing updates with immediate neighbors while link-state routing protocols exchange routing information across a much larger area.
When a failure occurs in the network, such as a neighbor becomes unreachable, link-state protocols flood LSAs with a special multicast address throughout an area. This process sends information out all ports, except the port on which the information was received. Each link-state router takes a copy of the LSA and updates its link-state, or topological database. The link-state router then forwards the LSA to all neighbor devices. LSAs cause every router within the area to recalculate routes. For this reason, the number of link-state routers within an area should be limited.
A link is the same as an interface on a router. The state of the link is a description of an interface and the relationship to the neighbor routers. For example, a description of the interface would include the IP address of the interface, the subnet mask, the type of network that it is connected to, the routers connected to that network, and so on. The collection of link-states form a link-state database which is sometimes called a topological database. The link-state database is used to calculate the best paths through the network. Link-state routers apply the Dijkstra shortest path first algorithm against the link-state database. This builds the SPF tree with the local router as the root. The best paths are then selected from the SPF tree and placed in the routing table.
The next page will discuss the link-state routing algorithm.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.