Skip to main content

Summary of Module 1

Summary

This page summarizes the topics discussed in this module.
Variable-Length Subnet Masks (VLSM), often referred to as "subnetting a subnet", is used to maximize addressing efficiency. It is a feature that allows a single autonomous system to have networks with different subnet masks. The network administrator is able to use a long mask on networks with few hosts, and a short mask on subnets with many hosts.  
It is important to design an addressing scheme that allows for growth and does not involve wasting addresses. To apply VLSM to the addressing problem, large subnets are created for addressing LANs. Very small subnets are created for WAN links and other special cases.
VLSM helps to manage IP addresses. VLSM allows for the setting of a subnet mask that suits the link or the segment requirements. A subnet mask should satisfy the requirements of a LAN with one subnet mask and the requirements of a point-to-point WAN with another.
Addresses are assigned in a hierarchical fashion so that summarized addresses will share the same high-order bits. There are specific rules for a router. It must know in detail the subnet numbers attached to it and it does not need to tell other routers about each individual subnet if the router can send an aggregate route for a set of routers. A router using aggregate routes would have fewer entries in its routing tables.
If VLSM is the scheme chosen, it must then be calculated and configured correctly.
RIP v1 is considered an interior gateway protocol that is classful. RIP v1 is a distance vector protocol that broadcasts its entire routing table to each neighbor router at predetermined intervals. The default interval is 30 seconds. RIP uses hop count as a metric, with 15 as the maximum number of hops.
To enable a dynamic routing protocol, select a routing protocol, such as RIP v2, assign the IP network numbers without specifying the subnet values, and then assign the network or subnet addresses and the appropriate subnet mask to the interfaces. In RIP v2, the router command starts the routing process. The network command causes the implementation of three functions. The routing updates are multicast out an interface, the routing updates are processed if they enter that same interface, and the subnet that is directly connected to that interface is advertised. The version 2 command enables RIP v2.
The show ip protocols command displays values about routing protocols and routing protocol timer information associated with the router. Use the debug ip rip command to display RIP routing updates as they are sent and received. The no debug all or undebug all commands will turn off all debugging.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.