Skip to main content

Troubleshooting RIP v2

Troubleshooting RIP v2
1.2.6 This page explains the use of the debug ip rip command.
Use the debug ip rip command to display RIP routing updates as they are sent and received. The no debug all or undebug all commands will turn off all debugging.
The example shows that the router being debugged has received updates from one router at source address 10.1.1.2. The router at source address 10.1.1.2 sent information about two destinations in the routing table update. The router being debugged also sent updates, in both cases to the multicast address 224.0.0.9 as the destination. The number in parentheses is the source address encapsulated into the IP header.
Other outputs sometimes seen from the debug ip rip command includes entries such as the following:
RIP: broadcasting general request on Ethernet0
RIP: broadcasting general request on Ethernet1
These outputs appear at startup or when an event occurs such as an interface transition or a user manually clears the routing table.
An entry, such as the following, is most likely caused by a malformed packet from the transmitter:
RIP: bad version 128 from 160.89.80.43
Examples of debug ip rip outputs and meanings are shown in Figure .
The Lab Activities will help students become more familiar with debug commands.
The next page will discuss default routes.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.