Skip to main content

Purpose of a routing protocol and autonomous systems

Purpose of a routing protocol and autonomous systems 
6.2.3 
This page will explain why routing protocols and autonomous systems are used.
The goal of a routing protocol is to build and maintain a routing table. This table contains the learned networks and associated ports for those networks. Routers use routing protocols to manage information received from other routers and its interfaces, as well as manually configured routes.
The routing protocol learns all available routes, places the best routes into the routing table, and removes routes when they are no longer valid. The router uses the information in the routing table to forward routed protocol packets.
The routing algorithm is fundamental to dynamic routing. Whenever the topology of a network changes because of growth, reconfiguration, or failure, the network knowledgebase must also change. The network knowledgebase needs to reflect an accurate view of the new topology.
When all routers in an internetwork operate with the same knowledge, the internetwork is said to have converged. Fast convergence is desirable because it reduces the period of time in which routers would continue to make incorrect routing decisions.
Autonomous systems divide the global internetwork into smaller and more manageable networks. Each AS has its own set of rules and policies and an AS number that will distinguish it from all other autonomous systems.
The next page will introduce the two main classes of routing algorithms.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.