Skip to main content

Distance vector routing loop issues

Distance vector routing loop issues 
7.1.2
This page will help students understand routing loops.
Routing loops can occur when inconsistent routing tables are not updated due to slow convergence in a changing network.
An example is as follows:
  1. Just before the failure of Network 1, all routers have consistent knowledge and correct routing tables. The network is said to have converged. For Router C, the preferred path to Network 1 is by way of Router B, and the distance from Router C to Network 1 is 3.
  2. When Network 1 fails, Router E sends an update to Router A. Router A stops routing packets to Network 1, but Routers B, C, and D continue to do so because they have not yet been informed of the failure. When Router A sends out its update, Routers B and D stop routing to Network 1. However, Router C has not received an update. For Router C, Network 1 can still be reached through Router B.
  3. Now Router C sends a periodic update to Router D, which indicates a path to Network 1 by way of Router B. Router D changes its routing table to reflect this incorrect information, and sends the information to Router A. Router A sends the information to Routers B and E, and the process continues. Any packet destined for Network 1 will now loop from Router C to B to A to D and back to again to C.
The next page explains how a maximum count can be used to prevent routing loops

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.