Skip to main content

Common RIP configuration issues


Common RIP configuration issues 
7.2.4 
This page will provide some more information about the methods that are used to reduce routing loops.
RIP routers must rely on neighbor routers for some types of network information. A common term used to describe this functionality is Routing by Rumor. RIP uses a distance vector routing algorithm. All distance vector routing protocols have issues that are primarily created by slow convergence. Convergence is when all routers in a network have the same routing information.
Among these issues are routing loops and counting to infinity. These result in inconsistencies due to update messages with incorrect routes that are propagated around the network.
To reduce routing loops and counting to infinity, RIP uses the following techniques:
  • Split horizon
  • Poison reverse
  • Holddown counters
  • Triggered updates
Some of these methods may need to be configured.
RIP permits a maximum hop count of 15. Any destination greater that 15 hops away is tagged as unreachable. This maximum hop count greatly restricts the use of RIP in large internetworks but prevents counts to infinity and endless network routing loops.
The split horizon rule is based on the theory that it is not useful to send information about a route back in the direction from which it came. In some network configurations, it may be necessary to disable split horizon.
The following command is used to disable split horizon:
GAD(config-if)#no ip split-horizon
The holddown timer is another mechanism that may need to be configured. Holddown timers help prevent counting to infinity but also increase convergence time. The default holddown for RIP is 180 seconds. This will prevent any inferior route from being updated but may also prevent a valid alternative route from being installed. The holddown timer can be decreased to speed up convergence but should be done with caution. Ideally, the timer should be set just longer than the longest possible update time for the internetwork. In the example in Figure , the loop consists of four routers. If each router has an update time of 30 seconds, the longest loop would be 120 seconds. Therefore, the holddown timer should be set to slightly more than 120 seconds.
Use the following command to change the holddown timer as well as the update, invalid, and flush timers:
Router(config-router)#timers basicupdate invalid holddown flush [sleeptime ]
Another configurable item that affects convergence time is the update interval. The default RIP update interval in Cisco IOS is 30 seconds. This can be configured for longer intervals to conserve bandwidth, or for shorter intervals to decrease convergence time.
Another issue with routing protocols is the unwanted advertisement of routing updates out a particular interface. When a network command is issued for a given network, RIP will immediately begin to send advertisements out all interfaces within the specified network address range. A network administrator can use the passive-interface command to disable routing updates on specified interfaces.  
Because RIP is a broadcast protocol, the network administrator may have to configure RIP to exchange routing information in a non-broadcast network such as Frame Relay. In this type of network, RIP must be informed of neighbor RIP routers. To do this use the neighbor command displayed in Figure .
By default, the Cisco IOS software receives RIP Version 1 and Version 2 packets, but sends only Version 1 packets. The network administrator can configure the router to only receive and send Version 1 packets or the administrator can configure the router to send only Version 2 packets. To configure the router to send and receive packets from only one version, use the commands in Figure .
To control how packets received from an interface are processed, use the commands in Figure .
The next page will show students how to verify a RIP configuration.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.