Skip to main content

Avoiding routing loops with triggered updates

Avoiding routing loops with triggered updates
7.1.6  This page will explain how triggered updates can be used to prevent routing loops.
New routing tables are sent to neighbor routers on a regular basis. For example, RIP updates occur every 30 seconds. However a triggered update is sent immediately in response to some change in the routing table. The router that detects a topology change immediately sends an update message to adjacent routers. These routers generate triggered updates to notify their adjacent neighbors of the change. When a route fails, an update is sent immediately. Triggered updates, used in conjunction with route poisoning, ensure that all routers know of failed routes before any holddown timers can expire.
Triggered updates do not wait for update timers to expire. They are sent when routing information has changed. A router will immediately send a routing update on its other interfaces. This forwards the information about the route that has changed and starts the holddown timers sooner on the neighbor routers. The wave of updates propagates throughout the network.
Router C issues a triggered update, which announces that network 10.4.0.0 is unreachable. Upon receipt of this information, Router B announces through interface S0/1 that network 10.4.0.0 is down. In turn, Router A sends an update out interface Fa0/0.
The next page will explain how holddown timers can be used to prevent routing loops.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.