Skip to main content

Module 6: Routing and Routing Protocols / Overview

Module 6: Routing and Routing Protocols
Overview

Routing is a set of directions to get from one network to another. These directions, also known as routes, can be dynamically given to the router by another router, or they can be statically assigned to the router by an administrator.
This module introduces the concept of dynamic routing protocols, describes the classes of dynamic routing protocols, and gives examples of protocols in each class.
A network administrator chooses a dynamic routing protocol based upon many considerations. These include the size of the network, the bandwidth of available links, the processing power of the routers, the brands and models of the routers, and the protocols that are used in the network. This module will provide more details about the differences between routing protocols that help network administrators make a choice.
This module covers some of the objectives for the CCNA 640-801, INTRO 640-821, and ICND 640-811 exams. -
Students who complete this module should be able to perform the following tasks:
  • Explain the significance of static routing
  • Configure static and default routes
  • Verify and troubleshoot static and default routes
  • Identify the classes of routing protocols
  • Identify distance vector routing protocols
  • Identify link-state routing protocols
  • Describe the basic characteristics of common routing protocols
  • Identify interior gateway protocols
  • Identify exterior gateway protocols
Enable Routing Information Protocol (RIP) on a router

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.