Skip to main content

Managing configuration files using TFTP

Managing configuration files using TFTP
5.2.3
This page will explain how a TFTP server can be used to back up the configuration files for a Cisco device.
In a Cisco router or switch, the active configuration is in RAM and the default location for the startup configuration is NVRAM. The startup configuration should be backed up in case the configuration is lost. One of these backup copies of the configuration can be stored on a TFTP server. The copy running-config tftp command can be used to do this. The steps for this process are listed below:
  • Enter the command copy running-config tftp.
  • Enter the IP address of the TFTP server to store the configuration file.
  • Enter the name to assign to the configuration file or accept the default name.
  • Type yes to confirm each choice.
The backup configuration file can be loaded from a TFTP server to restore the router configuration. The steps below outline this process:
  • Enter the command copy tftp running-config.
  • Select a host or network configuration file at the prompt.
  • Enter the IP address of the TFTP server where the configuration file is located.
  • Enter the name of the configuration file or accept the default name.
  • Confirm the configuration filename and the server address that the system supplies.
The Lab Activity on this page will teach students how to back up a copy of a router configuration file and load it from a TFTP file server.
The next page will show students how the copy and paste feature can be used to manage configuration files.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.