Friday, February 26, 2010

Switch operation / Latency / Switch modes

Switch operation
8.1.3 This page describes the operation of a switch.


A switch is simply a bridge with many ports. When only one node is connected to a switch port, the collision domain on the shared media contains only two nodes. The two nodes in this small segment, or collision domain, consist of the switch port and the host connected to it. These small physical segments are called microsegments. Another capability emerges when only two nodes are connected. In a network that uses twisted-pair cabling, one pair is used to carry the transmitted signal from one node to the other node. A separate pair is used for the return or received signal. It is possible for signals to pass through both pairs simultaneously. The ability to communicate in both directions at once is known as full duplex. Most switches are capable of supporting full duplex, as are most NICs. In full duplex mode, there is no contention for the media. A collision domain no longer exists. In theory, the bandwidth is doubled when full duplex is used.

In addition to faster microprocessors and memory, two other technological advances made switches possible. CAM is memory that works backward compared to conventional memory. When data is entered into the memory it will return the associated address. CAM allows a switch to find the port that is associated with a MAC address without search algorithms. An application-specific integrated circuit or ASIC comprises an integrated circuit (IC) with functionality customized for a particular use (equipment or project), rather than serving for general-purpose use. An ASIC allows some software operations to be done in hardware. These technologies greatly reduced the delays caused by software processes and enabled a switch to keep up with the data demands of many microsegments and high bit rates.

The next page will define latency.

Latency
8.1.4 This page will discuss some situations that cause latency.


Latency is the delay between the time a frame begins to leave the source device and when the first part of the frame reaches its destination. A variety of conditions can cause delays:

• Media delays may be caused by the finite speed that signals can travel through the physical media.
• Circuit delays may be caused by the electronics that process the signal along the path.
• Software delays may be caused by the decisions that software must make to implement switching and protocols.
• Delays may be caused by the content of the frame and the location of the frame switching decisions. For example, a device cannot route a frame to a destination until the destination MAC address has been read.

The next page will discuss switch modes.

Switch modes
8.1.5 This page will introduce the three switch modes.


How a frame is switched to the destination port is a trade off between latency and reliability. A switch can start to transfer the frame as soon as the destination MAC address is received. This is called cut-through packet switching and results in the lowest latency through the switch. However, no error checking is available. The switch can also receive the entire frame before it is sent to the destination port. This gives the switch software an opportunity to verify the Frame Check Sequence (FCS). If the frame is invalid, it is discarded at the switch. Since the entire frame is stored before it is forwarded, this is called store-and-forward packet switching. A compromise between cut-through and store-and-forward packet switching is the fragment-free mode. Fragment-free packet switching reads the first 64 bytes, which includes the frame header, and starts to send out the packet before the entire data field and checksum are read. This mode verifies the reliability of the addresses and LLC protocol information to ensure the data will be handled properly and arrive at the correct destination.

When cut-through packet switching is used, the source and destination ports must have the same bit rate to keep the frame intact. This is called symmetric switching. If the bit rates are not the same, the frame must be stored at one bit rate before it is sent out at the other bit rate. This is known as asymmetric switching. Store-and-forward mode must be used for asymmetric switching.

Asymmetric switching provides switched connections between ports with different bandwidths. Asymmetric switching is optimized for client/server traffic flows in which multiple clients communicate with a server at once. More bandwidth must be dedicated to the server port to prevent a bottleneck.

The Interactive Media Activity will help students become familiar with the three types of switch modes.

The next page will discuss the Spanning-Tree Protocol (STP).

No comments:

Post a Comment