Skip to main content

Summary of Module 8

Summary
This page summarizes the topics discussed in this module.


Ethernet is a shared media, baseband technology, which means only one node can transmit data at a time. Increasing the number of nodes on a single segment increases demand on the available bandwidth. This in turn increases the probability of collisions. A solution to the problem is to break a large network segment into parts and separate it into isolated collision domains. Bridges and switches are used to segment the network into multiple collision domains.

A bridge builds a bridge table from the source addresses of packets it processes. An address is associated with the port the frame came in on. Eventually the bridge table contains enough address information to allow the bridge to forward a frame out a particular port based on the destination address. This is how the bridge controls traffic between two collision domains.

Switches learn in much the same way as bridges but provide a virtual connection directly between the source and destination nodes, rather than the source collision domain and destination collision domain. Each port creates its own collision domain. A switch dynamically builds and maintains a Content-Addressable Memory (CAM) table, holding all of the necessary MAC information for each port. CAM is memory that essentially works backwards compared to conventional memory. Entering data into the memory will return the associated address.

Two devices connected through switch ports become the only two nodes in a small collision domain. These small physical segments are called microsegments. Microsegments connected using twisted pair cabling are capable of full-duplex communications. In full duplex mode, when separate wires are used for transmitting and receiving between two hosts, there is no contention for the media. Thus, a collision domain no longer exists.

There is a propagation delay for the signals traveling along transmission medium. Additionally, as signals are processed by network devices further delay, or latency, is introduced.

How a frame is switched affects latency and reliability. A switch can start to transfer the frame as soon as the destination MAC address is received. Switching at this point is called cut-through switching and results in the lowest latency through the switch. However, cut-through switching provides no error checking. At the other extreme, the switch can receive the entire frame before sending it out the destination port. This is called store-and-forward switching. Fragment-free switching reads and checks the first sixty-four bytes of the frame before forwarding it to the destination port.

Switched networks are often designed with redundant paths to provide for reliability and fault tolerance. Switches use the Spanning-Tree Protocol (STP) to identify and shut down redundant paths through the network. The result is a logical hierarchical path through the network with no loops.

Using Layer 2 devices to break up a LAN into multiple collision domains increases available bandwidth for every host. But Layer 2 devices forward broadcasts, such as ARP requests. A Layer 3 device is required to control broadcasts and define broadcast domains.

Data flow through a routed IP network, involves data moving across traffic management devices at Layers 1, 2, and 3 of the OSI model. Layer 1 is used for transmission across the physical media, Layer 2 for collision domain management, and Layer 3 for broadcast domain management.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.