Skip to main content

1000BASE-T / 1000BASE-SX and LX

1000BASE-T
7.2.2 This page will describe 1000BASE-T.


As Fast Ethernet was installed to increase bandwidth to workstations, this began to create bottlenecks upstream in the network. The 1000BASE-T standard, which is IEEE 802.3ab, was developed to provide additional bandwidth to help alleviate these bottlenecks. It provided more throughput for devices such as intra-building backbones, inter-switch links, server farms, and other wiring closet applications as well as connections for high-end workstations. Fast Ethernet was designed to function over Category 5 copper cable that passes the Category 5e test. Most installed Category 5 cable can pass the Category 5e certification if properly terminated. It is important for the 1000BASE-T standard to be interoperable with 10BASE-T and 100BASE-TX.

Since Category 5e cable can reliably carry up to 125 Mbps of traffic, 1000 Mbps or 1 Gigabit of bandwidth was a design challenge. The first step to accomplish 1000BASE-T is to use all four pairs of wires instead of the traditional two pairs of wires used by 10BASE-T and 100BASE-TX. This requires complex circuitry that allows full-duplex transmissions on the same wire pair. This provides 250 Mbps per pair. With all four-wire pairs, this provides the desired 1000 Mbps. Since the information travels simultaneously across the four paths, the circuitry has to divide frames at the transmitter and reassemble them at the receiver.

The 1000BASE-T encoding with 4D-PAM5 line encoding is used on Category 5e, or better, UTP. That means the transmission and reception of data happens in both directions on the same wire at the same time. As might be expected, this results in a permanent collision on the wire pairs. These collisions result in complex voltage patterns. With the complex integrated circuits using techniques such as echo cancellation, Layer 1 Forward Error Correction (FEC), and prudent selection of voltage levels, the system achieves the 1-Gigabit throughput.

In idle periods there are nine voltage levels found on the cable, and during data transmission periods there are 17 voltage levels found on the cable. With this large number of states and the effects of noise, the signal on the wire looks more analog than digital. Like analog, the system is more susceptible to noise due to cable and termination problems.

The data from the sending station is carefully divided into four parallel streams, encoded, transmitted and detected in parallel, and then reassembled into one received bit stream. Figure represents the simultaneous full duplex on four-wire pairs. 1000BASE-T supports both half-duplex as well as full-duplex operation. The use of full-duplex 1000BASE-T is widespread.

The next page will introduce 1000BASE-SX and LX

1000BASE-SX and LX
7.2.3 This page will discuss single-mode and multimode optical fiber.


The IEEE 802.3 standard recommends that Gigabit Ethernet over fiber be the preferred backbone technology.

The timing, frame format, and transmission are common to all versions of 1000 Mbps. Two signal-encoding schemes are defined at the physical layer. The 8B/10B scheme is used for optical fiber and shielded copper media, and the pulse amplitude modulation 5 (PAM5) is used for UTP.

1000BASE-X uses 8B/10B encoding converted to non-return to zero (NRZ) line encoding. NRZ encoding relies on the signal level found in the timing window to determine the binary value for that bit period. Unlike most of the other encoding schemes described, this encoding system is level driven instead of edge driven. That is the determination of whether a bit is a zero or a one is made by the level of the signal rather than when the signal changes levels.

The NRZ signals are then pulsed into the fiber using either short-wavelength or long-wavelength light sources. The short-wavelength uses an 850 nm laser or LED source in multimode optical fiber (1000BASE-SX). It is the lower-cost of the options but has shorter distances. The long-wavelength 1310 nm laser source uses either single-mode or multimode optical fiber (1000BASE-LX). Laser sources used with single-mode fiber can achieve distances of up to 5000 meters. Because of the length of time to completely turn the LED or laser on and off each time, the light is pulsed using low and high power. A logic zero is represented by low power, and a logic one by high power.

The Media Access Control method treats the link as point-to-point. Since separate fibers are used for transmitting (Tx) and receiving (Rx) the connection is inherently full duplex. Gigabit Ethernet permits only a single repeater between two stations. Figure is a 1000BASE Ethernet media comparison chart.

The next page describes the architecture of Gigabit Ethernet

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.