Skip to main content

Summary of Module 7

Summary
This page summarizes the topics discussed in this module.


Ethernet is a technology that has increased in speed one thousand times, from 10 Mbps to 10,000 Mbps, in less than a decade. All forms of Ethernet share a similar frame structure and this leads to excellent interoperability. Most Ethernet copper connections are now switched full duplex, and the fastest copper-based Ethernet is 1000BASE-T, or Gigabit Ethernet. 10 Gigabit Ethernet and faster are exclusively optical fiber-based technologies.

10BASE5, 10BASE2, and 10BASE-T Ethernet are considered Legacy Ethernet. The four common features of Legacy Ethernet are timing parameters, frame format, transmission process, and a basic design rule.

Legacy Ethernet encodes data on an electrical signal. The form of encoding used in 10 Mbps systems is called Manchester encoding. Manchester encoding uses a change in voltage to represent the binary numbers zero and one. An increase or decrease in voltage during a timed period, called the bit period, determines the binary value of the bit.

In addition to a standard bit period, Ethernet standards set limits for slot time and interframe spacing. Different types of media can affect transmission timing and timing standards ensure interoperability. 10 Mbps Ethernet operates within the timing limits offered by a series of no more than five segments separated by no more than four repeaters.

A single thick coaxial cable was the first medium used for Ethernet. 10BASE2, using a thinner coax cable, was introduced in 1985. 10BASE-T, using twisted-pair copper wire, was introduced in 1990. Because it used multiple wires 10BASE-T offered the option of full-duplex signaling. 10BASE-T carries 10 Mbps of traffic in half-duplex mode and 20 Mbps in full-duplex mode.

10BASE-T links can have unrepeated distances up to 100 m. Beyond that network devices such as repeaters, hub, bridges and switches are used to extend the scope of the LAN. With the advent of switches, the 4-repeater rule is not so relevant. You can extend the LAN indefinitely by daisy-chaining switches. Each switch-to-switch connection, with maximum length of 100m, is essentially a point-to-point connection without the media contention or timing issues of using repeaters and hubs.

100-Mbps Ethernet, also known as Fast Ethernet, can be implemented using twisted-pair copper wire, as in 100BASE-TX, or fiber media, as in 100BASE-FX. 100 Mbps forms of Ethernet can transmit 200 Mbps in full duplex.

Because the higher frequency signals used in Fast Ethernet are more susceptible to noise, two separate encoding steps are used by 100-Mbps Ethernet to enhance signal integrity.

Gigabit Ethernet over copper wire is accomplished by the following:

• Category 5e UTP cable and careful improvements in electronics are used to boost 100 Mbps per wire pair to 125 Mbps per wire pair.
• All four wire pairs instead of just two. This allows 125 Mbps per wire pair, or 500 Mbps for the four wire pairs.
• Sophisticated electronics allow permanent collisions on each wire pair and run signals in full duplex, doubling the 500 Mbps to 1000 Mbps.

On Gigabit Ethernet networks bit signals occur in one tenth of the time of 100 Mbps networks and 1/100 of the time of 10 Mbps networks. With signals occurring in less time the bits become more susceptible to noise. The issue becomes how fast the network adapter or interface can change voltage levels to signal bits and still be detected reliably one hundred meters away at the receiving NIC or interface. At this speed encoding and decoding data becomes even more complex.

The fiber versions of Gigabit Ethernet, 1000BASE-SX and 1000BASE-LX offer the following advantages: noise immunity, small size, and increased unrepeated distances and bandwidth. The IEEE 802.3 standard recommends that Gigabit Ethernet over fiber be the preferred backbone technology.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.