Skip to main content

VPN/Benefits of VPNs/ Intranet and Extranet



Virtual private network (VPN)
2.1.10 A vitual private network (VPN) is a private network that is constructed within a public network infrastructure such as the global Internet. Using VPN, a telecommuter can remotely access the network of the company headquarters. Through the Internet, a secure tunnel can be built between the PC of the telecommuter and a VPN router at the company headquarters.


The next page will explain the benefits of VPNs.


 
Benefits of VPNs
2.1.11 This page will introduce the three main types of VPNs and explain how they work.


Cisco products support the latest in VPN technology. A VPN is a service that offers secure, reliable connectivity over a shared public network infrastructure such as the Internet. VPNs maintain the same security and management policies as a private network. The use of a VPN is the most cost-effective way to establish a point-to-point connection between remote users and an enterprise network.

The following are the three main types of VPNs:

• Access VPNs provide remote access for mobile and small office, home office (SOHO) users to an Intranet or Extranet over a shared infrastructure. Access VPNs use analog, dialup, ISDN, DSL, mobile IP, and cable technologies to securely connect mobile users, telecommuters, and branch offices.

• Intranet VPNs use dedicated connections to link regional and remote offices to an internal network over a shared infrastructure. Intranet VPNs differ from Extranet VPNs in that they allow access only to the employees of the enterprise.

• Extranet VPNs use dedicated connections to link business partners to an internal network over a shared infrastructure. Extranet VPNs differ from Intranet VPNs in that they allow access to users outside the enterprise.

The next page will introduce intranets and extranets.

This page will teach students about intranets and extranets.


Intranets and extranets
2.1.12 One common configuration of a LAN is an intranet. Intranet Web servers differ from public Web servers in that the public must have the proper permissions and passwords to access the intranet of an organization. Intranets are designed to permit users who have access privileges to the internal LAN of the organization. Within an intranet, Web servers are installed in the network. Browser technology is used as the common front end to access information on servers such as financial, graphical, or text-based data.

Extranets refer to applications and services that are Intranet based, and use extended, secure access to external users or enterprises. This access is usually accomplished through passwords, user IDs, and other application-level security. An extranet is the extension of two or more intranet strategies with a secure interaction between participant enterprises and their respective intranets.

This page concludes this lesson. The next lesson will discuss bandwidth. The first page will explain why bandwidth is important.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.