Skip to main content

Troubleshooting Internet connection problems / Binary presentation of data


Troubleshooting Internet connection problems
1.1.9 This page will show students how to troubleshoot hardware, software, and network configuration problems. The goal is to locate and repair the problems in a set amount of time to gain access to the curriculum. This lab will demonstrate how complex it is to configure Internet access. This includes the processes and procedures used to troubleshoot computer hardware, software, and network systems.


This page concludes this lesson. The next lesson will discuss computer number systems. The first page will describe the binary system.



Binary presentation of data
1.2.1 Computers work with and store data using electronic switches that are either ON or OFF. Computers can only understand and use data that is in this two-state or binary format. The 1s and 0s are used to represent the two possible states of an electronic component in a computer. 1 is represented by an ON state, and 0 is represented by an OFF state. They are referred to as binary digits or bits.


American Standard Code for Information Interchange (ASCII) is the code that is most commonly used to represent alpha-numeric data in a computer. ASCII uses binary digits to represent the symbols typed on the keyboard. When computers send ON or OFF states over a network, electrical, light, or radio waves are used to represent the 1s and 0s. Notice that each character is represented by a unique pattern of eight binary digits.

Because computers are designed to work with ON/OFF switches, binary digits and binary numbers are natural to them. Humans use the decimal number system, which is relatively simple when compared to the long series of 1s and 0s used by computers. So the computer binary numbers need to be converted to decimal numbers.

Sometimes binary numbers are converted to hexadecimal numbers. This reduces a long string of binary digits to a few hexadecimal characters. It is easier to remember and to work with hexadecimal numbers.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.