Skip to main content

Route poisoning

Route poisoning 
7.1.5 
This page will explain what route poisoning is and why it is used.
Route poisoning is used by various distance vector protocols to overcome large routing loops and offer detailed information when a subnet or network is not accessible. To accomplish this, the hop count is usually set to one more than the maximum.
One way to avoid inconsistent updates is route poisoning. When Network 5 goes down, Router E will set a distance of 16 for Network 5 to poison the route. This indicates that the network is unreachable. When the route is poisoned, Router C is not affected by incorrect updates about the route to Network 5. After Router C receives a route poisoning from Router E, it sends an update, which is called a poison reverse, back to Router E. This makes sure all routers on the segment have received the poisoned route information.
When route poisoning is used with triggered updates it will speed up convergence time because neighboring routers do not have to wait 30 seconds before they advertise the poisoned route.
Route poisoning causes a routing protocol to advertise infinite-metric routes for a failed route. Route poisoning does not break split horizon rules. Split horizon with poison reverse is route poisoning that is placed on links that split horizon would not normally allow routing information to flow across. In either case, the result is that failed routes are advertised with infinite metrics.
The next page will discuss how triggered updates can prevent routing loops.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.