Sunday, May 1, 2011

Distance vector routing loop issues

Distance vector routing loop issues 
7.1.2
This page will help students understand routing loops.
Routing loops can occur when inconsistent routing tables are not updated due to slow convergence in a changing network.
An example is as follows:
  1. Just before the failure of Network 1, all routers have consistent knowledge and correct routing tables. The network is said to have converged. For Router C, the preferred path to Network 1 is by way of Router B, and the distance from Router C to Network 1 is 3.
  2. When Network 1 fails, Router E sends an update to Router A. Router A stops routing packets to Network 1, but Routers B, C, and D continue to do so because they have not yet been informed of the failure. When Router A sends out its update, Routers B and D stop routing to Network 1. However, Router C has not received an update. For Router C, Network 1 can still be reached through Router B.
  3. Now Router C sends a periodic update to Router D, which indicates a path to Network 1 by way of Router B. Router D changes its routing table to reflect this incorrect information, and sends the information to Router A. Router A sends the information to Routers B and E, and the process continues. Any packet destined for Network 1 will now loop from Router C to B to A to D and back to again to C.
The next page explains how a maximum count can be used to prevent routing loops

No comments:

Post a Comment