Skip to main content

Distance vector routing protocol features

Distance vector routing protocol features 
6.2.5
This page will explain how the distance vector routing protocol is used.
The distance vector routing algorithm passes periodic copies of a routing table from router to router. These regular updates between routers communicate topology changes. The distance vector routing algorithm is also known as the Bellman-Ford algorithm.
Each router receives a routing table from its directly connected neighbor routers. Router B receives information from Router A. Router B adds a distance vector number, such as a number of hops. This number increases the distance vector. Then Router B passes this new routing table to its other neighbor, Router C. This same step-by-step process occurs in all directions between neighbor routers.
The algorithm eventually accumulates network distances so that it can maintain a database of network topology information. However, the distance vector algorithm does not allow a router to know the exact topology of an internetwork since each router only sees its neighbor routers.
Each router that uses distance vector routing first identifies its neighbors. The interface that leads to each directly connected network has a distance of 0. As the distance vector discovery process proceeds, routers discover the best path to destination networks based on the information they receive from each neighbor. Router A learns about other networks based on the information that it receives from Router B. Each of the other network entries in the routing table has an accumulated distance vector to show how far away that network is in a given direction.
Routing table updates occur when the topology changes. As with the network discovery process, topology change updates proceed step-by-step from router to router. Distance vector algorithms call for each router to send its entire routing table to each of its adjacent neighbors. The routing tables include information about the total path cost as defined by its metric and the logical address of the first router on the path to each network contained in the table.
An analogy of distance vector could be the signs found at a highway intersection. A sign points toward a destination and indicates the distance to the destination. Further down the highway, another sign points toward the destination, but now the distance is shorter. As long as the distance is shorter, the traffic is on the best path.
The next page will describe the link-state routing algorithm.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.