Skip to main content

Managing the Cisco File System / IOS file system overview

Managing the Cisco File System
IOS file system overview
5.2.1
This page will introduce the Cisco IOS File System.
Routers and switches depend on software for their operation. The two types of software required are operating systems and configuration.
The operating system used in almost all Cisco devices is the Cisco IOS. The Cisco IOS is the software that allows the hardware to function as a router or switch. The IOS file is several megabytes.
The software a router or switch uses is referred to as the configuration file or the config. The configuration contains the instructions that define how the device is to route or switch. A network administrator creates a configuration that defines the desired functionality of a Cisco device. The functions that can be specified by the configuration are the IP addresses of the interfaces, routing protocols, and networks to be advertised. The configuration file typically is a few hundred to a few thousand bytes.
Each of the software components is stored in memory as a separate file. These files are also stored in different types of memory. 
The IOS is stored in a memory area called flash. Flash memory provides non-volatile storage of an IOS that can be used as an operating system at startup. The flash allows the IOS to be upgraded or stores multiple IOS files. In many router architectures, the IOS is copied into and run from RAM.
A copy of the configuration file is stored in NVRAM to be used during startup. This is referred to as the startup configuration or startup config. The configuration in RAM is used to operate a router. It is referred to as the running configuration or running config.
Version 12 and later releases of the IOS provide a single interface to all the file systems that a router uses. This is referred to as the Cisco IOS File System (IFS). The IFS provides a single method to perform all the file system management for a router. This includes the flash memory file systems, the network file systems, such as TFTP and FTP, and read or write data, such as NVRAM, the running configuration, and ROM. The IFS uses a common set of prefixes to specify file system devices. 
The IFS uses the URL convention to specify files on network devices and the network. The URL convention identifies the location of the configuration files following the colon as [[[//location]/directory]/filename]. The IFS also supports FTP file transfers.
The Interactive Media Activity will help students become familiar with the IFS configuration files and their locations.
The next page will describe the IOS naming conventions.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.