Skip to main content

Troubleshooting Layer 1 using show interfaces



Troubleshooting Layer 1 using show interfaces 
9.3.1 This page will discuss show commands and explain how they are used to troubleshoot Layer 1 issues.
The Cisco IOS contains many commands for troubleshooting. Among the more widely used are the show commands. Every aspect of the router can be viewed with one or more of the show commands. The show command used to check the status and statistics of the interfaces is the show interfaces command. The show interfaces command without arguments returns status and statistics on all the router ports. The show interfaces returns the status and statistics of only the named port. To view the status of Serial 0/0, use show interfaces serial 0/0.
The status of two important portions of the interfaces is shown with the show interfaces command. They are the physical, or hardware portion and logical, or software, portion. These can be related to the Layer 1 and the Layer 2 functions.
The hardware includes cables, connectors, and interfaces showing the condition of the physical connection between the devices. The software status shows the state of messages such as keepalives, control information, and user information that are passed between adjacent devices. This relates to the condition of a Layer 2 protocol passed between two connected router interfaces.
These important elements can be demonstrated by an example of a serial port on a modular router. The show interfaces serial 0/0 command displays the line and data-link protocol status of serial port one. 
The first parameter refers to the hardware layer and indicates if the interface receives a Carrier Detect (CD) signal from the other end of the connection. If the line is down, a problem may exist with the cabling, equipment somewhere in the circuit may be powered off or malfunctioning, or one end may be administratively down. If the interface is administratively down it has been manually disabled in the configuration.
The show interfaces serial 0/0 command also provides information to help diagnose other Layer 1 issues that are not as easy to determine. An increasing number of carrier transitions counts on a serial link may indicate one or more of the following problems: 
  • Line interruptions due to problems in the service provider network
  • Faulty switch, DSU, or router hardware
If an increasing number of input errors appear in the show interfaces serial 0/0 output, there are several possible sources of those errors. Some common Layer 1 problems are as follows:
  • Faulty telephone company equipment
  • Noisy serial line
  • Incorrect cable or cable length
  • Damaged cable or connection
  • Defective CSU or DSU
  • Defective router hardware
Another area to examine is number of interface resets. These are the result of too many missed keepalives. The following Layer 1 problems could be a cause of interface resets:
  • Bad line that causes carrier transitions
  • Possible hardware problem at the CSU, DSU, or switch
If carrier transitions and interface resets are increasing or if input errors are high while this occurs, the problem is likely to be a bad link or defective CSU or DSU.
The number of errors should be interpreted relative to the amount of traffic that the router has processed and the amount of time that the statistics have been captured. The router tracks statistics that provide information about the interface. The statistics reflect router operation since it was started or since the last time the counters were cleared. 
If the show interfaces output shows the last clearing of the counters as never, use the show version command to find out how long the router has been functional.
Use the clear counters privileged EXEC command to reset the counters to zero. These counters should always be cleared after an interface problem has been corrected. This reset to zero gives a better picture of the current status of the network and will help verify that an issue has been corrected.
The Lab Activity will help students become more familiar with the show interfaces command.
The next page will explain how the show interfaces command is used to troubleshoot Layer 2 problems.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.