Skip to main content

Testing by OSI layers

Testing by OSI layers
9.2.3 This page will describe the types of errors that occur at the first three layers of the OSI model.
Layer 1 errors can include the following: 
  • Broken cables
  • Disconnected cables
  • Cables connected to the wrong ports
  • Intermittent cable connection
  • Rollover, crossover, or straight-through cables used incorrectly
  • Transceiver problems
  • DCE cable problems
  • DTE cable problems
  • Devices turned off
Layer 2 errors can include the following: 
  • Improperly configured serial interfaces
  • Improperly configured Ethernet interfaces
  • Improper encapsulation set
  • Improper clockrate settings on serial interfaces
  • Network interface card (NIC) problems
Layer 3 errors can include the following: 
  • Routing protocol not enabled
  • Wrong routing protocol enabled
  • Incorrect IP addresses
  • Incorrect subnet masks
If errors appear on the network, the process of testing through the OSI layers should begin. The ping command is used at Layer 3 to test connectivity. At Layer 7 the telnet command may be used to verify the application layer software between source and destination stations. Both of these commands will be discussed in detail in a later section.
The next page will explain how indicator lights can be used to test a network.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.