Skip to main content

Examining the Routing Table / The show ip route command

Examining the Routing Table 
The show ip route command 
9.1.1 This page will explain the functions of the show ip route command.
One of the primary functions of a router is to determine the best path to a given destination. A router learns paths, which are also called routes, from the configurations entered by an administrator or from other routers through routing protocols. Routers store this routing information in routing tables using on-board random access memory (RAM). A routing table contains a list of the best available routes. Routers use the routing table to make packet forwarding decisions.
The show ip route command displays the contents of the IP routing table. This table contains entries for all known networks and subnetworks, as well as a code that indicates how that information was learned. The following are some additional commands that can be used with the show ip route command:
  • show ip route connected
  • show ip routeaddress
  • show ip route rip
  • show ip route igrp
  • show ip route static
A routing table maps network prefixes to an outbound interface. When RTA receives a packet destined for 192.168.4.46, it looks for the prefix 192.168.4.0/24 in its table. RTA then forwards the packet out interface Ethernet0 based on the routing table entry. If RTA receives a packet destined for 10.3.21.5, it sends that packet out Serial 0/0.
The example routing table shows four routes for directly connected networks. These routes are labeled with a C. RTA drops any packet destined for a network that is not listed in the routing table. The routing table for RTA will have to include more routes before it can forward to other destinations. There are two ways to add new routes:
  • Static routing - An administrator manually defines routes to one or more destination networks.
  • Dynamic routing - Routers follow rules defined by a routing protocol to exchange routing information and independently select the best path.
Administratively defined routes are said to be static because they do not change until a network administrator manually programs the changes. Routes learned from other routers are dynamic because they change automatically as directly connected routers update each other with new information. Each method has fundamental advantages and disadvantages. 
The Lab Activity will allow students to use the show ip route command to examine routing tables.
The next page will define a gateway of last resort.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.