Skip to main content

Router solicitation message / Congestion and flow control messages

Router solicitation message 
8.2.7 This page will explain why router solicitation messages are used.
A host generates an ICMP router solicitation message in response to a missing default gateway.This message is sent using multicast and it is the first step in the router discovery process. A local router will respond with a router advertisement that identifies the default gateway for the local host. Figure identifies the frame format and Figure gives an explanation of each field.
The next page will discuss source quench messages.Congestion and flow control messages
8.2.8 This page will explain how source quench messages are used to solve problems related to network congestion.
If multiple computers try to access the same destination at the same time, the destination computer can be overwhelmed with traffic. Congestion can also occur when traffic from a high speed LAN reaches a slower WAN connection. Dropped packets occur when there is too much congestion on a network. ICMP source quench messages are used to reduce the amount of data lost. The source quench message asks senders to reduce the rate at which they transmit packets. Congestion will usually subside after a short period of time and the source will slowly increase the transmission rate if no other source quench messages are received. Most Cisco routers do not send source quench messages by default, because the source quench message may add to the network congestion.
A small office, home office (SOHO) is a scenario where ICMP source quench messages might be used effectively. A SOHO could consist of four computers that are networked with CAT-5 cable and have a shared Internet connection over a 56K modem. The 10-Mbps bandwidth of the SOHO LAN could quickly overwhelm the 56K bandwidth of the WAN link, which would result in data loss and retransmissions. The gateway host can use an ICMP source quench message to request that the other hosts reduce their transmission rates to prevent continued data loss. A network where congestion on the WAN link could cause communication problems is shown in Figure .
This page concludes this lesson. The next page will summarize the main points from this module.

Comments

Popular posts from this blog

OSI layers / Peer-to-peer communications / TCP/IP model

OSI layers 2.3.4 This page discusses the seven layers of the OSI model. The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. - Dividing the network into seven layers provides the following advantages: • It breaks network communication into smaller, more manageable parts. • It standardizes network components to allow multiple vendor development and support. • It allows different types of network hardware and software to communicate with each other. • It prevents changes in one layer from affecting other layers. • It divides network communication into smaller parts to make learning it easier to understand. In the foll...

Advantages and disadvantages of link-state routing

Advantages and disadvantages of link-state routing 2.1.5  This page lists the advantages and disadvantages of link-state routing protocols. The following are advantages of link-state routing protocols:  Link-state protocols use cost metrics to choose paths through the network. The cost metric reflects the capacity of the links on those paths. Link-state protocols use triggered updates and LSA floods to immediately report changes in the network topology to all routers in the network. This leads to fast convergence times. Each router has a complete and synchronized picture of the network. Therefore, it is very difficult for routing loops to occur. Routers use the latest information to make the best routing decisions. The link-state database sizes can be minimized with careful network design. This leads to smaller Dijkstra calculations and faster convergence. Every router, at the very least, maps the topology of it...

Ports for services

Ports for services 10.2.2  Services running on hosts must have a port number assigned to them so communication can occur. A remote host attempting to connect to a service expects that service to use specific transport layer protocols and ports. Some ports, which are defined in RFC 1700, are known as the well-known ports. These ports are reserved in both TCP and UDP.  These well-known ports define applications that run above the transport layer protocols. For example, a server that runs FTP will use ports 20 and 21 to forward TCP connections from clients to its FTP application. This allows the server to determine which service a client requests. TCP and UDP use port numbers to determine the correct service to which requests are forwarded. The next page will discuss ports in greater detail.